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Abstract

Using the finite dimensional example of˜PSU(1,1), the universal covering of PSU(1,1), as
a guide, we revisit the orbit method as it applies toD̂, the universal central extension ofD =
Diff +(S1). We clarify some aspects of the classification of coadjoint orbits, determine boundedness
properties of the natural height function on these orbits, and calculate orbital integrals.
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1. Introduction

LetG denote a connected real Lie group. The orbit method of Kirillov, Kostant and others
aims to establish a qualitative correspondence between data associated to integral coadjoint
orbits ofG, on the one hand, and irreducible unitary representations ofG, on the other hand.
In the forward direction one applies the methods of geometric quantization to produce a
representation, and in the reverse direction one computes a momentum map (applied to an
orbit of highest weight vectors, if this exists) or a transform of the (properly interpreted)
character of a representation, to obtain a coadjoint orbit. These prescriptions are in general
ambiguous, as they should be, since the method attempts to relate quantum and classical
phenomena (see[7]).
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This paper concerns the orbit method, as it applies to the universal central extension,
D̂, of D = Diff +(S1). This infinite dimensional example has been considered previously
by many authors, especially Kirillov (see[6–8] and references), Segal[13–15], and Witten
[17].

The plan of the paper is the following. InSection 2we review the classification of the
smooth coadjoint orbits with central chargec �= 0, due essentially to Kirillov and Segal
[6,13,14]. For fixedc > 0, there is a faithful monodromy map from orbits with central charge

c to the space of conjugacy classes of̃PSL(2,R), the universal covering of PSL(2,R), as
depicted inFigs. 1 and 2. Our aim is to generally clarify the classification, in particular by
explaining why the monodromy mapping is natural (specifically, exploiting an observation
of Kirillov linking supersymmetry and the form of the coadjoint action), and adding some
details concerning representatives of orbits.

In Section 3we consider boundedness properties of d/dθ on these orbits. This question
was considered locally in[17], and the corresponding global question was posed there. We
find that with the exceptions of a single parabolic orbit, the ‘universal Teichmuller orbit’,
and those orbits below the Teichmuller orbit, as depicted inFig. 2, d/dθ is unbounded.
This leads to an intuitive picture of what the various coadjoint orbits look like, from a
Morse-theoretic point of view.

In Section 4we have recapitulated some of the standard structure theory for the Virasoro
algebra, and the orbit correspondence that one would naively expect for highest weight
representations. Utilizing the momentum map point of view, the orbit method predicts that
unitarizable highest weight representations should correspond to nonparabolic orbits with
d/dθ bounded. We use this to complete one part of the argument inSection 3.

In Section 5we consider orbital integrals. For any Lie groupG a coadjoint orbitO ⊂ g∗
has a canonical symplectic formωO. If G is finite dimensional, the corresponding volume
element defines aG-invariant measure supported onO, which can often be interpreted as a
tempered distribution. One can thus consider the Fourier transform

Ô(x) =
∫
O

e−i〈x,λ〉 1

d!
ωd, x ∈ g, (1.1)

which is necessarily AdG-invariant. OftenÔ can be computed exactly because the integrand
can be interpreted as an equivariantly closed differential form; in particular whenO is an
integral coadjoint orbit, Kirillov and others have proved in many cases that

Ô(x) = j (x)χO(ex), (1.2)

where

j (x) = det1/2
(

sinh(ad(x/2))

ad(x/2)

)
(1.3)

andχO is a character of a unitary representation associated to the orbit by geometric quan-
tization (see Section 7.5 of[1,7]).

For an infinite dimensional group the preceding integrals and formulas do not literally
make sense. However, in the context of loop groups, Frenkel has given a plausible inter-
pretation of(1.1)and proved a formula of the form(1.2), involving the coadjoint orbits for
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the universal central extension, the characters of the positive energy representations, and
Wiener measure[3]. It is intriguing to note that forD, thej function is essentially theη
function.

In Sections 5.1–5.3, there is an extended heuristic discussion of the possible meaning
of (1.1). The interpretation we eventually focus on involves conditioned Wiener measure
(specifically, ‘the Malliavin–Shavgulidze measures’). InSection 5.4we prove that the naive
integrals exist precisely for those orbits which are “below” the critical universal Teichmuller
orbit, and they can be evaluated. The form of the answer is somewhat surprising. The
integrals are expressed in terms of the power series for theÂ-genus andL-genus, which
possibly suggests some further link with supersymmetry. The formulas can be applied to
obtain a weak form of asymptotic invariance for the Malliavin–Shavgulidze measures.

In part II of this paper, we will elaborate on Kirillov’s work on the geometric realization
of the unitary highest weight representations (see[18] and[8]).

In Appendix Awe have recalled some well-known facts concerning the orbit method as

it applies to ˜PSU(1,1). This is a fascinating example, which remains mysterious despite its
fundamental status. In particular, the interaction between the highest weight, principal and
complementary series, for small values of the mass parameterm2, is especially noteworthy
(seeFig. 3, which follows from work of Bargmann).

Notation. Throughout this paper we will viewV = vect(S1) as the Lie algebra ofD. This
means that the bracket of two vector fields is given by[

f
d

dθ
, g

d

dθ

]
= (f ′g − fg′)

d

dθ
, (1.4)

which is the opposite of the bracket one obtains by viewing vector fields as differential
operators.

The universal covering ofD, denotedD̃, will be identified with

{C∞ Ψ : R→ R : Ψ ′ > 0, Ψ (t + 1) = Ψ (t)+ 1}, (1.5)

where

D̃→ D : Ψ → ψ, ψ(e2π it ) = e2π iΨ (t). (1.6)

The real Virasoro algebra, the universal central extension ofV, denoted as

0→ Rκ → V̂→ V→ 0 (1.7)

will be realized using the cocycle

c∇(v,w) = 1

2

∫
∇v d(∇w), (1.8)

where∇ denotes the Riemannian connection onS1, i.e.∇(f (d/dt)) = df ⊗ (d/dt). One
can think of this extension invariantly by viewingc∇ as a section of a line bundle over the
space of all affine connections onS1. But for notational simplicity we will prefer to have a
fixed coordinatet at all times.

At one point we will consider the oriented 1-manifoldI , the unit interval. We denote
the corresponding group of automorphisms byDD or Aut(I ), and its Lie algebra byVD or
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aut(I ), which consists of vector fields vanishing at the endpoints, where the D stands for
Dirichlet. The Virasoro extension̂VD is defined by the same formula as above.

2. Classification of coadjoint orbits with c �= 0

Using our preferred coordinatet for S1, we have a fixed vector space decomposition
V̂ = V ⊕ Rκ. With respect to this decomposition we can identify the dual ofV̂ with the
space

V̂
∗ = Rκ∗ ⊕ V ∗, (2.1)

whereV ∗ is naturally identified with the space of distributional quadratic differentials on
S1.

In this section we are principally interested in the action on the smooth part of the dual,
Rκ∗ ⊕ Q ⊂ V̂∗, whereQ = {q(dt)2 : q ∈ C∞(S1,R)}. The affine spacescκ∗ + Q,
c �= 0, are invariant under the coadjoint action. The basic problem is to determine the orbit
structure.

The analysis proceeds as follows. First (following Kirillov and Segal) one observes the
nonobvious fact thatcκ∗+Q is equivariantly isomorphic to a natural but nonstandard action
ofD on Hill’s operators. The fact that this second action is natural is neatly explained by the
existence of a canonical superalgebra extension ofV̂ (N = 1 superconformal symmetry;
for an historical account of the discovery of this structure, see[16]). Secondly, one observes
(following Kirillov and Segal) that the space of Hill’s equations is equivariantly isomorphic
to the space of real projective structures onS1, hence that the orbits are separated by
their monodromy, properly interpreted as conjugacy classes in the universal covering of
PSL(2,R). Finally, one determines the image of the monodromy map, which involves an
analysis of stabilizers, initiated by Kirillov[6] and reconsidered by Witten[17]. In the
process we find representatives for the orbits, and the corresponding stability subgroups.

In the last section we consider the slight changes necessary in the open string case.

2.1. N = 1 supersymmetry, monodromy and smooth coadjoint orbits forc �= 0

There is a canonically associated superalgebra extension ofV

sV = Ω−1⊕Ω−1/2, (2.2)

whereΩ−1 = V has the usual Lie structure, and the commutator map for odd variables

Ω−1/2⊗Ω−1/2→ Ω−1 (2.3)

is multiplication of half vector fields (where in this paper we understand this square root in
terms of the trivial periodic spin structure). Since the map(2.3)is clearlyD-equivariant,sV
is indeed a superalgebra. There is also a central extension

0→ R→ sV̂→ sV→ 0. (2.4)

As aZ2-graded vector space

sV̂ = V̂⊕Ω−1/2. (2.5)
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The multiplication of odd variables is given by the symmetric map

Ω−1/2⊗Ω−1/2→ V̂ : Φ,Ψ → ΦΨ −
(∫
∇(Φ)∇(Ψ )

)
κ, (2.6)

note that∇(Φ) is a half form, so that the integral is well-defined. To check that this does
indeed form a superalgebra, we need to check theV-equivariance of(2.6). This reduces to
checking the identity

c∇(V ,ΦΨ ) = −
∫ {(

−vφ′ + 1

2
v′φ

)′
ψ ′ + φ′

(
−vψ ′ + 1

2
v′ψ

)′ }
, (2.7)

whereV = v(d/dt),Φ = φ(dt)2, Ψ = ψ(dt)2. The LHS of(2.7) is (1/2)
∫
v′(φψ)′′, and

a straightforward calculation shows that this is exactly the RHS.
Dual to the multiplication map(2.7), there is aD-equivariant map

V̂
∗ → S2(Ω−1/2)∗. (2.8)

To compute the map suppose thatcκ∗ + q ∈ V̂∗. The corresponding symmetric bilinear
form onΩ−1/2 is given by the composition

Ω−1/2⊗Ω−1/2→ V̂cκ
∗+q→ R,

f

(
d

dt

)1/2

⊗ g
(

d

dt

)1/2

→ fg
d

dt
−
(∫

f ′g′ dt
)
κ →

∫
{−cf ′g′ + qfg}dt. (2.9)

If q is an ordinary function, this is the symmetric form that corresponds to the Hill’s operator

cκ∗ + q(dt)2 : Ω−1/2→ Ω3/2 ⊂ (Ω−1/2)∗, (2.10)

whereκ∗(f (d/dt)1/2) = f ′′(d/dt)3/2. This is Kirillov’s explanation of the following
lemma (see the cryptic comments in Section 7.6 of[6]).

Lemma 2.1. The coadjoint action ofD on cκ∗ +Q, c �= 0, is isomorphic to the natural
action ofD (by conjugation) on the space of Hill’s operators

{cκ∗ + q(dt)2 : Ω−1/2→ Ω3/2 : q ∈ C∞(S1,R)}.
A real projective structure for an orientedn-manifold C, with universal coveringC̃, is
a pair (M, f ), whereM : Aut(C̃) → Aut(RPn) is a (monodromy) representation and
f : C̃ → RPn is aM-equivariant orientation-preserving immersion. Two such structures
are isomorphic if they differ by the natural action of ag ∈ Aut(RPn) on such structures,
g : (M, f )→ (gMg−1, g ◦ f ). There is a natural action of Aut(C) on such structures by
σ : (M, f )→ (M, f ◦ σ−1) which preserves isomorphism classes.

In the one-dimensional case the projection PSL(2,R) → RP1 : g → gP(1,0) is a
homotopy equivalence. As a consequence, forC = S1 an isomorphism class of projective

structures, [(M, f )], determines a conjugacy class in the universal cover̃PSL(2,R) of
PSL(2,R), sincef determines a homotopy class of paths from the identity toM(1), hence
an element̃M(1) coveringM(1). Kirillov and Segal independently noted that this leads to
a classification of smooth coadjoint orbits forc �= 0.
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Proposition 2.1. There is aD-equivariant map from Hill’s operators, as inLemma 2.1, to
the natural action on isomorphism classes of projective structures onS1, given by

cκ∗ + q(dt)2→ P(u1, u2),

whereu1, u2 ∈ Ω−1/2 is a pair of independent solutions of cu′′ + qu= 0. This map is an
isomorphism. The monodromy map

cκ∗ +Q→ [ ˜PSL(2,R)] : cκ∗ + q(dt)2→ [F̃ (1)], (2.11)

where F̃ is the unique lift of the fundamental solution ofc(d/dθ)2 + q, separates the
coadjoint orbits.

For notational simplicity, letG and G̃ denote PSL(2,R) and its universal covering,
respectively, viewed as abstract Lie groups. LetEll, HypandPar denote the sets of elliptic,
hyperbolic and parabolic elements ofG, respectively; the corresponding inverse images
will be referred to as the elliptic, hyperbolic and parabolic elements ofG̃, respectively.

To work with G̃, it is convenient to identifyG with PSU(1,1), which we view as a
subgroup ofD. The Poincare rotation number

ρ : D̃→ R : σ → lim
n↑∞

σn(t)

n
(2.12)

exists, is independent oft , and defines a continuous central function onD̃. The restriction
of ρ to G̃ is characterized by: (i)ρ is integral on nonelliptic elements of̃G; (ii) ρ(σ +n) =
ρ(σ)+ n, for all σ ∈ G̃, n ∈ Z = C(G̃); (iii) ρ(t → t + t0) = t0 for t0 ∈ R. (Proof. Any
g ∈ G has a fixed point as a transformation of the closed disk, by Brouwer’s fixed point
theorem. Ifg is nonelliptic, then its fixed points are on the circle. Thus for a nonelliptic
g̃ ∈ G̃, there existst such thatg̃ shifts t by an integer. This leads to (i). Parts (ii) and (iii)
are obvious.) This leads to the following standard picture of the conjugacy classes ofG̃ and
G.

In this pictureπ denotes the projection from conjugacy classes ofG̃ to conjugacy classes
ofG. The projection|tr| is the mapG→ R : g→ |trace(g)| (thusg is elliptic, parabolic, or
hyperbolic if and only if|tr| < 2,=2, >2, respectively). The bifurcation point corresponding
to the heightρ = n involves three points:n ∈ C(G̃) (thus 0 corresponds to the identity
in G̃), and the conjugacy classes Par±

n , represented by the parabolic elementsU±1 + n,
respectively, whereU is the unique element of̃G which covers the unipotent element(

1 1
1

)
∈ PSL(2,R)

and has a fixed point as a transformation ofR. As |tr| ↓ 2, Hypn has{n} and Par±n as
accumulation points, and the points Par±

n have{n} in their closure (so that the topology
is notT1). The image of the exponential map exp :g → G̃ is the union of Hyp0 and the
closure of the set of elliptic elements (for an alternate picture, see[4]).

In terms of this picture we can now state the fine classification of orbits, essentially due
to Kirillov. (Note: In [6], where the statement of the classification first appeared in a very
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Fig. 1. Conjugacy classes of PSU(1,1).

nearly correct form, there are several assertions which appear without proof, many of which
are completed in[17]. A complete proof, which is quite lengthy, can be found in[2].)

Theorem 2.1. Fix c > 0. The monodromy map(2.11)induces a bijective correspondence
between the smooth coadjoint orbits ofD̂ with central charge c and the set of conjugacy
classes given by{ρ ≥ 0} \ {{0},Par−0 }, in terms ofFig. 1. These coadjoint orbits are
represented by the following potentials:

(1) q(t) = 0 representsPar+0 , with stability subgroupRot(S1);
(2) q(t) = ch, h < 0, represents the orbit ofHyp0 with |tr| = 2 cosh(

√−h), with stability
subgroupRot(S1);

(3) q(t) = ch, h > 0, h �= (nπ)2 (n ∈ Z), represents the orbit of Ell withρ = (1/π)√h,
with stability subgroupRot(S1);

(4) q(t) = c(nπ)2, n > 0, represents the orbit{n} ⊂ C( ˜PSL(2,R)), with stability sub-
groupPSU(n)(1,1) ⊂ D (seeSection 4below);

(5) q(n,α) = c(nπ)2
(

1+ 2α sin(2πnt)(2+ sin(2πnt))

(1+ α sin(2πnt))2

)
, n > 0,
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Fig. 2. Smooth coadjoint orbits,c > 0.

represents the orbit ofHypn with |tr| = 2 cosh(α/2
√

1− α2), with stability subgroup
exp(Rξ(n,α))×Zn, whereξ(n,α) = sin(2πnt)(1+α sin(2πnt))(d/dt), Zn is identified
with the nth roots of1 in Rot(S1) and0< α < 1;

(6) q±(n,α) = c(nπ)2
(

1± 2α(1+ sin(2πnt)± 2α cos2(2πnt))

1± α sin(2πnt))2

)
, n > 0,

represents the orbitPar±n , with stability subgroupexp(Rξ(n,±)) × Zn, whereξ(n,±) =
(1+ sin(2πnt))(1± α sin(2πnt))(d/dt), Zn is identified with the nth roots of1 in
Rot(S1), for any choice ofα with 0< α < 1.

It is convenient to think of this parameterization in the following way.

Remark 2.1.

(a) The point of emphasizing this picture, rather thanFig. 1, is that in this paper we cannot
detect any significant qualitative differences between the Virasoro orbits corresponding
to the classes Hyp0, Par+0 and Ell1. This is surprising from the PSL(2,R) point of view.

(b) The most interesting orbit is the one corresponding to{1} in (4) of Theorem 2.1above,
which is the first bifurcation point as one ascendsFig. 2. This orbit, together with
its symplectic structure, can naturally be identified with (a dense subspace of) Ber’s
universal Teichmuller space, together with its Weil-Petersson Kahler structure[10]. We
will refer to this as the universal Teichmuller orbit.

2.2. Symmetry group ofI

In this section we note the slight changes necessary to classify the smooth coadjoint orbits
for the symmetry group ofI , the oriented unit interval, again for central chargec �= 0.

LetDD denote the group of orientation-preserving diffeomorphisms ofI . The rationale
for the notation is that the D stands for Dirichlet, as opposed to the periodic condition forS1.
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Remark 2.2. There is an injectionD̃0 = D1 → DD (essentially the identity map in
terms of the coordinatet). But this is far from an isomorphism because the image consists
of diffeomorphisms with relations between the derivatives at the endpoints. One might
naively expect thatDD would be the appropriate symmetry group for open string theory.
But in fact, in the present state of string theory, in which a background space–time is always
posited, it isD1 which is the relevant symmetry group.

The Lie algebra, denotedVD, consists of vector fields alongI which vanish on the
boundary. There are Virasoro extensions

0→ Rκ → V̂D → VD → 0, (2.13)

0→ Rκ → sV̂D → sVD → 0, (2.14)

both given by the same formulas as in the periodic case, whereΩ
−1/2
D consists of half vector

fields that vanish on the boundary.

Remark 2.3. The Virasoro cocyclec∇ is in fact a cocycle for the larger algebra Vect(I );
the point is that verification of the cocycle property does not involve an integration by parts,
so that the Dirichlet condition on vector fields is irrelevant.

Similarly, there is a superalgebrasVect(I ). On the other hand, theN = 1 superalge-
bra (2.14)depends upon the Dirichlet condition in an essential way; the point is that the
verification of the identity(2.7)does require an integration by parts.

In this case we setQD = {q(dt)2 : q ∈ C∞(I )}, and the smooth part of the coadjoint
action

DD × (cκ∗ +QD)→ cκ∗ +QD (2.15)

is equivalent to the natural action ofDD on Hill’s operators

{cκ∗ + q(dt)2 : Ω−1/2
D → Ω3/2 : q ∈ C∞(I )}, (2.16)

provided thatc �= 0. This is in turn equivalent to the action on isomorphism classes of
projective structures onI , i.e. immersions ofI into RP1, modulo the action of PSL(2,R).

Let∼ denote the equivalence relation onR≥0 corresponding to the partition 0, (0,1),1,
(1,2), . . . . Given a projective structure onI , the images of 0 and 1 may or may not coincide.
If the images coincide, we define the winding number of the structure in the usual way; this
number is an integer. If the images do not coincide, then we define the winding number to
be the interval(n, n+ 1) if n is the largest integer such that the map defining the structure
coversRP1 completelyn times.

Proposition 2.2.

(a) The orbit structure for the action(2.15)is determined by the map

ρD : cκ∗ +QD → R≥0/ ∼,
where a Hill’s operator is mapped to the winding number of the corresponding iso-
morphism class of projective structure.
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(b) A representative for the orbit corresponding to the class of aw ≥ 0 is given by
q = cw2.

(c) If w = n is integral, then(DD)q=cn2 = PSU(1,1)(n)1 (seeRemark 2.2), and otherwise
the stability subgroup is trivial.

Proof of Proposition 2.2. It is clear that the winding number is constant on orbits. Given two
projective structures with the same winding number, by applying an appropriate PSL(2,R)
transformation, we can suppose that their initial points coincide, and the same for their final
points. By considering the map defining the first projective structure, followed by the local
inverse to the map defining the second projective structure, we obtain a diffeomorphism of
I which relates the two projective structures. [To put this another way, consider the domains
of the two maps. Mark off the points that go to the image of the first point (which is the
same for both maps). The first subinterval for each map wraps exactly once aroundRP1,
hence we obtain a diffeomorphism between these two subintervals. We now consider the
second subintervals, and so on.] �

3. Boundedness properties of d/dt

We return to the case ofS1. Using the parameterization of coadjoint orbits incκ∗ +Q
by conjugacy classes, we can view the rotation number as a function on this space of orbits.

Theorem 3.1. Fix c > 0.

(a) The function〈d/dt, ·〉 is bounded on aD-orbit O ⊂ cκ∗ + Q if and only if either
ρ(O) < 1, or ρ(O) = 1 andO is either the universal Teichmuller orbit orPar−1 .

(b) An orbit has a critical point if and only ifO is represented by a constant potential, in
which case the constant potential is the unique critical point.

Proof of Theorem 3.1. Throughout this proof all integrals will be understood to be over
the interval [0,1]. We begin by recalling that the coadjoint action of the Virasoro algebra
is given by the formula

Ad∗
V̂

: D̃× (Rκ∗ ⊕Q)→ Rκ∗ ⊕Q,
Ad∗
V̂
(σ−1)(cκ∗ + q(dt)2) = cκ∗ + σ ∗(q(dt)2)+ 1

2cS(σ ), (3.1)

whereS(σ) = ( ln σ ′)′′ − 1
2( ln σ

′)′2 is the Schwarzian derivative (see[6,13]). Thus〈
d

dt
,Ad∗

V̂
(σ−1)(cκ∗ + q(dt)2)

〉
=
∫ {

q(σ )σ ′2+ c
2
S(σ)

}
dt

=
∫ {

q(σ )σ ′2− c
4
b′2
}

dt =
∫ {

q(σ )
e2b(∫
eb
)2 − c2b′2

}
dt, (3.2)

where lnσ ′ − ln σ ′(0) = b.
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We now suppose thatq is constant. In this case we can write our functional as

L(b) = q
∫

e2b(∫
eb
)2 − c4

∫
b′2, (3.3)

whereb ∈ Path0,0R, b = ln σ ′ − ln σ ′(0). If q is nonpositive, then Holder’s inequality
implies thatL(b) ≤ q = L(0). Thus the functionalL is bounded and the maximum occurs
at the constant potential representative for the orbit.

To prove that the same is true for anyq ≤ cπ2 requires a more sophisticated argument.
One method, although quite roundabout, is to use some elementary facts about the unitary
highest weight representations. We can suppose thatc  1. As we show inSection 4.2
below, each of the orbits represented byq ≤ cπ2 has a Plucker embedding into the projective
space of a unitary lowest weight representation. The basic point is that in this context,
classical and quantum energy are identified for elements in the Lie algebra, and it is easier
to study the energy operator on the linear representation space than on the curved orbit
space. Since the representation is of positive energy type, this implies the same for the
corresponding coadjoint orbit. To be precise, in(4.16)takeσ̂ · v in place ofv0 andL0 in
place ofx. This implies that the orbit of anyq ≤ cπ2 is d/dt-bounded.

Now consider the orbit Par−1 . Consider a representativeq for this orbit as in (6) ofTheorem
2.1

q = π2
(

1− 2α
1+ sin(θ)− 2α cos2(θ)

(1− 2α sin(θ))2

)
, θ = 2πt, (3.4)

where we may choose any 0< α < 1. If we chooseα < 1/4, then 1+ sin(θ) −
2α cos2(θ) ≥ 0, which implies thatq ≤ π2. Therefore(3.3) is bounded by

cπ2

∫
e2b(∫
eb
)2 − c4

∫
b′2 ≤ cπ2, (3.5)

where we have used the bound for the universal Teichmuller orbit.
We have now shown that d/dt is bounded in all cases claimed in (a). We now aim to show

that d/dt is not bounded for a constant potentialq > cπ2. Suppose that we consider the
critical valueq = cπ2. In this case we know that the stability subgroup jumps to PSU(1,1).
We have been considering d/dt as a function on the total space of the bundle

PSU(1,1)/Rot→ D/Rot→ D/PSU(1,1). (3.6)

The function d/dt has the constant valuecπ2 on the entire fiber PSU(1,1)/Rot, over the
basepointq = cπ2. It is easy to calculate this fiber. Consider the hyperbolic element

φ =
(
c s

s c

)
∈ PSU(1,1)1,

wherec = cosh(β), s = sinh(β). Thenbφ(t) = ln (Φ ′(t)/Φ ′(0)), where

Φ ′(t)= zφz
φ
= z

(cz+ s)/(sz+ c) · (sz+ c)2 = |cz+ s|−2

= 1

c2+ s2+ cs2 cos(2πt)
= 1

cosh(2β)+ sinh(2β) cos(2πt)
. (3.7)
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This is a one parameter family of maxima, with parameterβ. Since we can also act upon
these solutions by rotation, we obtain a two parameter family ofb’s, deforming the obvious
critical pointb = 0, which we can write as

bA,T (t) = 2 ln
1+ A cos(2πT )

1+ A cos(2π(t + T )) , (3.8)

where|A| = | tanh(2β)| < 1, andT is 1-periodic.
The important point for our purposes is that this family of critical points forL : D/Rot→

R is not a compact set in theW1 norm for the space ofb’s. AsA ↑ 1 we have the following
pointwise limit:

2 ln

(
2

1+ A cos(2πt)

)
→ 2ln

(
2

1+ cos(2πt)

)
= 4 ln (csc(πt)). (3.9)

This limit is not a continuous function. Therefore, theW1 norm of this family diverges to
+∞ asA ↑ 1.

We thus have, forq = cπ2,

q

∫
e2bA,T

(
∫

ebA,T )2
− c

4

∫
b′2A,T = cπ2 (3.10)

for all A < 1, whereas the energy integral
∫
b′2A,T is diverging asA ↑ 1. This implies that

for q > cπ2 the left-hand side will diverge to+∞ asA ↑ 1. This shows thatL is not
bounded on orbits which are represented by a constantq > cπ2.

We have now proven (a) for orbits represented by constants and Par−
1 . To complete the

proof of (a), we must show that d/dt is not bounded on all other orbits of parabolic and
hyperbolic type.

Consider one of our preferred representatives for a hyperbolic orbit as in (5) ofTheorem
2.1, which is of the formc(nπ)2 + q1. As in the earlier part of this proof, we consider a
hyperbolic elementφ ∈ PSU(1,1) which is of the formφ = R ◦ φ0 ◦ R−1, where

φ0 =
(
c s

s c

)
∈ PSU(1,1)1,

c = cosh(β), s = sinh(β), andR is a rotation. We choose the rotation so thatφ has fixed
points±e2π iT , +e2π iT is an attractive fixed point, andq1(e2π iT ) > 0. As we calculated
above,bφ will equalbA,T as in(3.8). Recalling(3.10)in the casen = 1, and remembering
the analogous quantity blows up forn > 1, we see that(3.2)will be at least

c(nπ)2+
∫
q1(φ(e2π it ))ρ(t)−4(∫

ρ(t)−2
)2

= c(nπ)2+ q1(e2π iT )
∫
ρ−4(∫

ρ−2
)2 +

∫ {q1(φ)− q1(e2π iT )}ρ−4(∫
ρ−2

)2 , (3.11)
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whereρ = 1+ A cos(2π(t + T )). Let a = A−1. By explicit calculation∫
ρ−4(∫
ρ−2

)2 = (3a + 2a3)π

(a − 1)4(1+ a)3√(1+ a)/(a − 1)

×
(
(a − 1)2(a + 1)

√
(a + 1)/(a − 1)

2aπ

)2

(3.12)

which is asymptotic to(5/4
√

2π)(a − 1)−1/2 asa ↓ 1 (i.e.A ↑ 1), and hence diverges.
To show that(3.11)diverges, it therefore suffices to show that the second term in(3.11)
divided by(a − 1)−1/2 has zero as a limit asA ↑ 1.

Suppose that we fixε > 0. We have

|φ(z)− e2π iT | = |φ0(e
−2π iT z)− 1| = |1− tanh(β)||z− e2π iT |

|e2π iT + z tanh(β)| (3.13)

for z ∈ S1. For z �= −e2π iT this tends to 0 asA ↑ 1 (or β → ∞). Fix δ > 0 and split
the integral in the numerator of the second term of(3.11)into two, one over|t − T | > δ
and the other over|t − T | < δ. Forβ sufficiently large, and for|t − T | > δ, we will have
|q1(φ(e2π it ))− q1(e2π iT )| < ε. Therefore, using(3.12), we see that∣∣∣∣∣

∫
|t−T |>δ(q1(φ)− q1(e2π iT ))ρ−4(∫

ρ−2
)2

∣∣∣∣∣ ≤ ε 6

4
√

2π
(a − 1)−1/2 (3.14)

for β sufficiently large. Now consider the other term∫
|t−T |<δ(q1(φ)− q1(e2π iT ))ρ−4(∫

ρ−2
)2 . (3.15)

For t close toT andA ↑ 1, ρ(t) is near 2. Sinceq is independent of the parameterA and
(
∫
ρ−2)−2 tends to 0 asA ↑ 1, we can chooseδ so that forA near 1, this term is as small as

we wish. This concludes the proof that(3.11)diverges asA ↑ 1. Hence d/dt is not bounded
on hyperbolic orbits.

This same argument works for an orbit of parabolic type Par+
n , n > 0, as well. But in this

case there is another more direct argument. In (6) ofTheorem 2.1we displayed a family
{q+(n,α) : 0< α < 1} which belongs to this orbit. We have〈

d

dt
, cκ∗ + q+(n,α) dt2

〉
= c(nπ)2(1+ 2α)

∫ 1

0

1+ sin(2πnt)+ 2α cos2(2πnt)

(1+ α sin(2πnt))2
dt.

(3.16)

As α ↑ 1, by considering the integral localized near points where the denominator is near
0, one sees that the values of the integrals tend to+∞. This shows that d/dt is not bounded
on Par+n .

To see that d/dt is not bounded on Par−n , n > 1, we can observe that the representatives
q−(n,α) can be made as close to a constant as we wish, by lettingα ↓ 0. Since d/dt is not
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bounded on the orbit ofc(nπ)2, it follows that d/dt is not bounded on Par−n , n > 1. This
completes the proof of (a) ofTheorem 3.1.

To prove part (b), consider a general Lie groupG. Fix an element of the Lie algebraV ∈ g.
We considerV as a function on a coadjoint orbitO ⊂ g∗. A pointf ∈ O is critical forV if
and only if the identity inG is critical for the functionL : G→ R : g → 〈V,Ad∗(g)f 〉.
Since

dL|1(X) = 〈V,ad∗(X)f 〉 = 〈[V,X], f 〉, (3.17)

f is critical forV onO if and only iff vanishes on ad(V )(g). Applying this to our context,
with V = d/dt andφ = cκ∗ + q(dt)2, it is easy to check thatq must be constant. �

Remark 3.1.

(a) For the benefit of the reader, we briefly summarize the local analysis ofL in (3.3)(see
also[17]). We have

dL|b(B) = 2q

∫
e2bB

∫
eb − ∫ e2b

∫
ebB

(
∫

eb)3
− c

2

∫
b′B ′. (3.18)

Thus if b has two derivatives and is a critical point, thenb solves the following
integro-differential equation

cb′′ + 4q

(∫
eb
)

e2b − (∫ e2b
)

eb(∫
eb
)3 = 0. (3.19)

Note that this equation is invariant under rotation, i.e.b(t) → b(t + T ) − b(T ), as it
must be. Also it follows thatb = 0 is a critical point.

The second derivative is given by(
d

dt

)2

L(tb)= 2q

[{∫
e2bḃ2

(∫
eb
)2

+
∫

e2bḃ2
∫

eb
∫

ebḃ−2
∫

e2bḃ

∫
eb

×
∫

ebḃ −
∫

e2b
∫

ebḃ
∫

ebḃ −
∫

e2b
∫

eb
∫

ebḃ2

}

×
(∫

eb
)4

−
(∫

e2bḃ

(∫
eb
)2

−
∫

e2b
∫

eb
∫

ebḃ

)

×4

(∫
eb
)3 ∫

ebḃ

](∫
eb
)−8

− c
2

∫
ḃ′2. (3.20)

At a general point this is pretty useless. However, at the critical pointb = 0, we have

Hess|b=0(ḃ) = 2q
∫
ḃ2− c

2

∫
ḃ′2 =

∞∑
n=1

{
2q − c

2
(2πn)2

}
(α2
n + β2

n), (3.21)

whereḃ =∑{αn sin(2πnt)+ βn{ cos(2πnt)− 1}}.
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This Hessian, at the pointb = 0, is negative semidefinite if and only ifq ≤ cπ2.
More generally at each bifurcation point, asρ increases, we pick up another positive
eigenvalue for the Hessian, always with multiplicity 2.

(b) Theorem 3.1leads to an intuitive picture for the orbits from a Morse-theoretic point
of view. The orbits below and including the universal Teichmuller orbit are infinite
dimensional analogues oft2 − |x|2 = 1, with t < 0. The orbit Par−1 is an infinite
dimensional analogue oft2 − |x|2 = 0, t < 0 (since the maximum is missing). The
hyperbolic orbits are analogous to the one sheeted hyperboloidt2 − |x|2 = −1. The
novel feature is that the elliptic orbits Elln above the universal Teichmuller orbit are
saddle-shaped, with 2(n− 1) directions pointing up.

4. Virasoro structure and Kirillov’s orbit correspondence

4.1. Virasoro structure

The complex Virasoro algebraVir is given in terms of generators and relations by

Vir =
(∑
n∈Z

CLn

)
⊕ CK, (4.1)

where

[Ln,Lm] = (n−m)Ln+m + 1
12n(n

2− 1)δ(n+m)K, [Ln,K] = 0. (4.2)

Given our choice of cocycle(1.8), the relation between Vir and̂V
C

is given by the mapping

Vir → V̂C

K→ 12π iκ, Ln→ 1

2π i
e2π int d

dt
, n �= 0, L0→ 1

2π i

d

dt
+ 1

24
K. (4.3)

(There is freedom in the choice of cocycle definingV̂, and we could eliminate the 12π and
the shift inL0 by replacing(1.8)by

ζ(−1)

2π i

∫
∇(ξ)d∇(η), (4.4)

where∇(f (∂/∂z)) = (∂f/∂z)(∂/∂z)).
The Virasoro algebra has a triangular decomposition, in the technical sense of[9], where

n± =
∑
±n>0

CLn and ĥ = CL0⊕ CK. (4.5)

The roots are{αn = nα1 : n ∈ Z \ {0}}, where

α1(L0) = −1, α1(K) = 0, (4.6)

andLn spans the root space forαn. It is natural to define

δ = 1

2

(∑
n>0

nα1

)
= 1

2
ζ(−1)α1 = − 1

24
α1. (4.7)
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For eachn > 0, there is an embedding

din : sl(2,C)→ vir :

(
0 0

1 0

)
→ fn = 1

n
L−n,(

1 0

0 −1

)
→ hn = 2

n
L0 + 1

12n
(n2− 1)K,

(
0 1

0 0

)
→ en = 1

n
Ln. (4.8)

Geometrically this corresponds to the following. The group of projective transformations
of Ĉ which map the circle to itself is the subgroup PSU(1,1) ⊂ PSL(2,C), where(

a b

b̄ ā

)
· z′ = az′ + b

b̄z′ + ā . (4.9)

Forn ≥ 1 there is ann-fold covering map

S1→ S1 : z→ z′ = zn (4.10)

and the diffeomorphisms ofzwhich cover the projective transformations ofz′ form a group
PSU(1,1)(n) which is ann-fold covering

0→ Zn→ PSU(1,1)(n)→ PSU(1,1)→ 0. (4.11)

The mapdin, modulo the center, is the complexification of the differential of the embedding

in : PSU(1,1)(n)→ D. (4.12)

It is tempting to think ofhn as the coroot corresponding to the rootαn, din as the embedding
corresponding to this coroot, and so on, analogous to the Kac–Moody case. However, there
are fundamental differences. Vir does not have an Ad-invariant form (so that Vir is not a
generalized Kac–Moody algebra, in the sense of Borcherds); the category of highest weight
representations is not semisimple and parabolic subalgebras are simple, rather than of the
form semisimple∝ nilradical. Except in the casesn = 1,2, the embeddings din cannot be
globalized: PSU(1,1)(n) does not have a complexification forn > 2, and this implies that
D does not have a complexification.

4.2. Naive orbit correspondence

In our context we know the unitary highest weight representations of Vir, and we want to
set up an orbit correspondence. The Fourier transform of an orbit requires regularization,
as we will see inSection 5below, so we first consider the moment map method of setting
up a correspondence with coadjoint orbits.

Suppose thatG acts irreducibly and unitarily on a Hilbert spaceH. If the corresponding
Lie algebra representation dπ is of highest weight type, with highest weight vectorv0, then
the moment map method of obtaining a coadjoint orbit proceeds as follows. Consider the
orbit of lowest weight vectors

G · P(v̄0) ⊂ P(H̄) (4.13)
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with the HamiltonianG-structure induced by the Fubini-Study metric; via the moment map

G · P(v̄0)→ g∗ : P(v̄)→ i

2π

〈dπ(·) · v, v〉
〈v, v〉 , (4.14)

this orbit is identified with a unique coadjoint orbitO. Note that in this correspondence,
given a Lie algebra element, its classical energy (i.e. its value at a point of the coadjoint
orbit) is the same as its quantum mechanical energy in the state defined by the corresponding
highest weight vector.

In good cases (e.g. ifG is compact), if we identifyO andG · P(v̄0) and letT denote the
tautological bundle ofP(H̄) restricted toO, thenT∗ is the line bundle corresponding to the
Kirillov symplectic structure, and there is an equivariant isomorphism of Borel–Weil

H→ H 0(O, T ∗) : w→ sw, (4.15)

wheresw is the section ofT ∗ given bysw(v̄) = 〈w, v̄〉.
LetH(c,h) denote the unique irreducible highest weight module of Vir corresponding

to the character ofh determined byK · v0 = cv0 andL0 · v0 = hv0. The conditions
under which this representation is unitarizable are well-known: eitherc ≥ 1 andh ≥ 0, or
c = 1− (6/m(m+ 1)),m = 2,3, . . . , andh = (((m+ 1)p −mq)2− 1)/4m(m+ 1), for
some 0< q ≤ p < m.

Proposition 4.1. Suppose thatH(c,h) is unitarizable. Then there is aD-equivariant iso-
morphism of HamiltonianD-spaces

O(cκ∗ + q)↔ D · P(v̄0) ⊂ P(L̄),

wherec = c/24π2 and q = cπ2(1− (24h/c)). In particular, for h = 0 we obtain the
universal Teichmuller orbit, and forh > 0 we obtain an orbit below the Teichmuller orbit,
in the sense ofFig. 2, whered/dt is bounded.

This follows directly from the identity

〈cκ∗ + q, x〉 = i

2π

〈dπ(x)v0, v0〉
〈v0, v0〉 , x ∈ V̂ (4.16)

takingx = κ yields the value forc; takingx = Ln, n �= 0, shows thatq is constant and
takingx = L0 yields the constant value forq.

5. Orbital integrals

In Section 5.3we will heuristically calculate the Fourier transform of aD orbit O in
cκ∗ + Q, wherec > 0. In the calculation we will formally manipulate a fictional Haar
measure forD. The point ofSection 5.1is to discuss what we might mean by such an object.
The ideal possibility is that such a object exists as a limit of well-defined quasi-invariant
measures which are asymptotically invariant in some sense. It turns out that there does exist
a left-invariant Haar measure of this sort (a limit of the Malliavin–Shavgulidze measures
considered in[11]). However, to obtain a mathematically well-defined transform ofO
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it seems necessary to consider another possibility for Haar measure, which is somewhat
surprising.

In Section 5.4we will rigorously discuss the integrals which we arrive at inSection
5.3. When we calculate their values, there is another surprise. Instead of encountering
something reminiscent of characters, we find something related to theÂ andL genuses,
which is related toN = 1 supersymmetry, and which we used inSection 2to explain the
form of the coadjoint action. This may or may not be a coincidence.

5.1. “Haar measures” forD

The groupD̃ is the product of the two subgroupsD̃0 (the stability subgroup of 0∈ R,
where we viewD̃ acting onR as in(1.5)) andR, the translations. These two subgroups do
not commute. We therefore consider two coordinate systems

R× Path0,0R↔ D̃↔ Path0,0R× R, (5.1)

(t, B)↔ Ψt,B = Ψ = Ψb,τ ↔ (b, τ ), (5.2)

where

t +
∫ x

0 eB∫
eB
= Ψ (x) =

∫ τ+x
0 eb∫

eb
(5.3)

and we initially think of Path0,0R as consisting ofsmooth1-periodic functionsB : R→ R

with B(0) = 0 (we will necessarily have to relax this smoothness condition when we
consider Wiener measure below). The left coordinates are given byt = Ψ (0), B =
ln Ψ ′ − ln Ψ ′(0); the formulas forτ andb are not quite as explicit. In the left coordi-
nate multiplication is given by the straightforward formula

(t, B)(s, C) =
(
t +

∫ s
0 eB∫

eB
, B

(
s +

∫ (·)
0 eC∫

eC

)
+ C(·)− B(s)

)
. (5.4)

The multiplication in the right system is given by

(b, τ )(c, η) = (B, T ), (5.5)

where

B(x) = b
(
τ+

∫ η−τ+x ec∫
ec

)
+ c(η − τ + x)− b

(
τ +

∫ η−τ ec∫
ec

)
− c(η − τ) (5.6)

andT is determined implicitly by the relation

τ = −
∫ η−T ec∫

ec
. (5.7)

There are corresponding left and right coordinate systems forD, whereR is replaced by
T = R/Z.
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Letν0,0
T denote the pinned Brownian measure on the path space Path0,0

C0 R with temperature
or varianceT . This is the Gaussian measure which corresponds to the Cameron–Martin
Hilbert space consisting ofW1 paths with norm(1/T )

∫
b′2, where

∫
f means

∫ 1
0 f , unless

otherwise specified.

Lemma 5.1. In terms of the left and right coordinate systems above, for eitherD̃ orD, we
have

dt × dν0,0
T (B) =

eb(τ)∫
eb

dν0,0
T (b)× dτ, (5.8)

(∫
eB
)

dt × dν0,0
T (B) = dν0,0

T (b)× dτ. (5.9)

Proof. This follows directly from the relations

t =
∫ τ eb∫

eb
, B(x) = b(τ + x)− b(τ). � (5.10)

The probability measure dν0,0
T (b) × dτ in DC1, denoted dνT , is what we referred to as

the Malliavin–Shavgulidze measure at temperatureT in Chapter 4 of[11]. (Note: in[11]
we used inverse temperatureβ as the parameter, and we usedθ = 2πt as our preferred
coordinate forS1, so there are some nuances in translating between our present notation
and that in[11].) This measure is well-known to be left quasi-invariant with respect toD̃
(due originally to the Malliavins and Shavgulidze, in a much more general context), and the
transformation properties are what one would expect based upon purely formal calculations
(see (3.2.12) of Chapter 4 of[11], or Proposition 5.1below).

Let dV denote a formal Lebesgue measure for the linear space Path0,0R. Since this is
an infinite dimensional space, this notion is ambiguous, even at the formal level. What is
needed is a Cameron–Martin space which gives us an idea of what we mean by volume
in the infinite dimensional limit. In the present context we take the Cameron–Martin space
mentioned previously, consisting ofW1 paths, with norm given by the energy

∫
b′2 (note

this is not natural geometrically—it depends upon the choice of coordinate).
We claim that we can interpret dV (b) × dτ as a left Haar measure. To verify this in

a formal way, we first calculate (using the left coordinate system, where multiplication is
more explicit)

L∗(t,B)(ds × dV (C))= eB(s)∫
eB

ds × Jacobian[C → C + B(Ψs,C)− B(s)] dV (C)

= eB(s)∫
eB

ds × dV (C). (5.11)

The fact that the Jacobian is 1 (in a precise mathematical sense, using the Cameron–Martin
space) is verified on pages 110–111 of[11]. In support of this note that

ρ((t, B); (s, C)) = eB(s)∫
eB
= Ψ ′t,B(Ψs,C(0)) (5.12)
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satisfies the requisite cocycle identityρ(ψ ◦ φ, η) = ρ(ψ;φ ◦ η)ρ(φ; η), as a direct
consequence of the chain rule.

We now calculate

L∗(s,C)(dV (b)× dτ)=L∗(s,C)
((∫

eB
)

dt × dV (B)

)
=
∫

eB+b(Ψt,B )

eb(t)
eb(t)∫

eb
dt × dV (B) (5.13)

(where we have used (5.11)). Now∫
eB+b(Ψt,B ) =

∫
eB(Ψ

−1
t,B )+b 1

Ψ ′t,B(Ψ
−1
t,B )
=
∫

eB
∫

eb, (5.14)

because

eB(Ψ
−1
t,B )

Ψ ′t,B(Ψ
−1
t,B )
= eB(Ψ

−1
t,B )(

eB(Ψ
−1
t,B )/

∫
eB
) = ∫ eB. (5.15)

Plugging this into(5.13)shows that dV (b)× dτ is formally a left Haar measure.
In Section 5.4we will show that dνT (b) × dτ is asymptotically invariant, asT ↑ ∞,

which is a more precise sense in whichDV(b)×dτ can be viewed as a (weak) Haar measure.
We now want to formally consider right invariance properties of the measures above. We

formally calculate

R∗(s,C)(dt × dV (B)) = dt × det(B → C + B(Ψs,C)− B(s))dV (B). (5.16)

The affine action onB is the coordinate expression for the right action of(s, C) ∈ D̃ on
the right coset spaceR \ D̃, hence the linear part of the action is a representation. Thus one
can argue that the determinant should define a character ofD, hence sinceD is simple the
determinant must be trivial. Assuming the soundness of this argument, we conclude that

dm(ψ) = dt × dV (B) (5.17)

is a right Haar measure. This argument is questionable because the determinant simply does
not exist from the Cameron–Martin point of view.

We have drawn the following conclusions, using purely formal reasoning: (1) the expres-
sion dV (b)×dτ is formally a left Haar measure; (2) the expression dt ×dV (B)might be a
right Haar measure. For (1) and (2) to hold simultaneously, we must give up the formal idea
that (either right or left) Haar measure is unique forD. Thus in particular either dt×dV (B)
or the inversion of dV (b)× dτ = (∫ eB

)
dt × dV (B) can be taken as right Haar measure.

Given that uniqueness of Haar measure fails, there is an ambiguity about what we might
mean by the modular function. This is important in orbit theory for finite dimensional
nonunimodular groups (see p. 450 of[7]), where the modular function is related to thej
function in(1.3).

In the case of̂D, we can formally compute thej function using aζ -function regulariza-
tion. Recall fromSection 4that the complex roots for the adjoint action ofh onV̂ are integral
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multiples of a single rootα1 with α1(L0) = −1. Therefore(1.3)equals

j (yL0)=
∏
n>0

eny/2− e−ny/2

ny
=
∏
n>0

(ny)−1(1− qn)q−n/2

= e−
∑

log(n)y−
∑

1q−(1/2)
∑
n
∏
(1−qn) = eζ

′(0)y−ζ(0)q−(1/2)ζ(−1)φ(q)

= 1√
2π
y1/2η(q), (5.18)

whereq = e−y .

5.2. Heuristic calculation of Fourier transformations, using left Haar measure

In this section we will work with the formal expression dmL(ψ) = dt × dV (B), for
which we have strong reason to interpret as a formal left Haar measure onD, by (5.1).

Our goal is to formally compute the Laplace transform of the orbitO, which we naively
expect to define an Ad-invariant function onV̂. Initially, we suppose thaty(d/dt) ∈ V is
arbitrary, but eventually we will focus on the case in whichy is constant. We formally
calculate∫

O
e〈y(d/dt)+isκ,·〉 1

∞!
ω∞ =Vol(O)eisc

∫
D

e〈y(d/dt),ψ ·(q(dt)
2+cκ∗)〉 dmL(ψ)

=Vol(O)eisc
∫

e
∫
y{q(ψ−1)(Ψ−1)′2+(c/2)S(Ψ−1)}dt dmL(ψ).

(5.19)

Now S(Ψ−1) = −S(Ψ ) ◦ Ψ−1(Ψ−1)′2 andS(Ψ ) = b′′ − 1
2b
′2. Thus∫

yS(Ψ−1)dt =−
∫
y(Ψ )

{
b′′ − 1

2
b′2
}

1

Ψ ′2
dΨ = −

∫
y(Ψ )

Ψ ′

{
b′′ − 1

2
b′2
}

dτ

=
∫ {(

y′(Ψ )Ψ ′2− y(Ψ )Ψ ′′
Ψ ′2

)
b′ + 1

2

y(Ψ )

Ψ ′
b′2
}

dτ

=−
∫
y′′(Ψ )Ψ ′b − 1

2

∫
y(Ψ )

Ψ ′
b′2 dτ, (5.20)

where in arriving at the last line we used the identityb′Ψ ′ = Ψ ′′.
Thus(5.19)equals

Vol(O)eisc
∫

e
∫ {(y(Ψ )/Ψ ′)q−(c/2)y′′(Ψ )Ψ ′b} e−(c/4) ∫ (y(Ψ )/Ψ ′)b′2 dV (b)dτ. (5.21)

Now consider the case in whichy is a positive constant. We need to make sense of the
expression

1

Z
e−(1/2)

∫
(b′2/Ψ ′) dV (b)dτ (5.22)
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as a measure. It appears that this simply cannot be done, because of the nonlocal nature of
Ψ ′ = eb/(eb). If one attempts to formally compute the Radon–Nikodym derivative for left
translation, one arrives at complete nonsense.

We conclude that while dmL = dV (b) × dτ is a reasonable candidate for a left Haar
measure, it simply is not the right one to use for orbit theory.

5.3. Heuristic calculation of Fourier transformations, using right Haar measure

In this section we will work with the formal expression dmR(ψ) = dt × dV (B), for
which we have some vague reason to interpret as a formal right Haar measure onD.

We again initially suppose thaty(d/dt) ∈ V is arbitrary. We formally calculate:∫
O

e〈y(d/dt)+isκ,·〉 1

∞!
ω∞

= Vol(O)eisc
∫
D

e〈y(d/dt),ψ
−1·(q(dt)2+cκ∗)〉 dmR(ψ)

= Vol(O)eisc
∫

e
∫
y{q(ψ)Ψ ′2+(c/2)(B ′′(t)−(1/2)B ′2(t))}dt dmR(ψ)

= Vol(O)eisc
∫

e
∫
((c/2)y′′B+yq(ψ)(e2B/(

∫
eB)2)) e−(c/4)

∫
yB′2 dmR(ψ). (5.23)

Remark 5.1.

(1) In the first equality we putψ−1, instead ofψ , so that to this point we have only used
the assumption that dmR is a right Haar measure.

(2) Switching the integral overO to an integral overD is permissible for orbits of types
1–3 inTheorem 2.1, but questionable for the others, because in these latter cases the
stability subgroups are noncompact. The factor Vol(O) is the ratio of(1/∞!)ω∞ and
dV (B), which should be a constant depending only upon the orbit, by invariance of the
two volume forms.

(3) Note that we simply deleted theB ′′ term appearing in(5.23), invoking the fact thatB
corresponds to a diffeomorphism ofS1, hence should have a periodic derivative. This
is essential for the next step in our argument, which is to writeB(t) = w(t) − tw(t),
wherew(t) is a Brownian motion, sincew is not differentiable. This may explain why
we do not obtain characters at the end of this paper. Unfortunately, we simply do not
see how to retain this term and obtain mathematically well-defined integrals.

We now specialize to the case in whichy is a positive constant. We then claim that(5.23)
equals

Vol(O)eisc
∫

ey(
∫
q(ψ)e2B/(

∫
eB)2) e−(yc/4)

∫
B ′2 dV (B)dt

= Vol(O)eisc 1

Z(yc)

∫∫
exp

(
y

∫
q(ψ)e2B

(
∫

eB)2

)
dν0,0
(yc/2)−1(B)dt. (5.24)



J. Dai, D. Pickrell / Journal of Geometry and Physics 44 (2003) 623–653 645

whereν0,0
T denotes the conditioned Wiener measure as inSection 5.1. Formally we have

dν0,0
T (B) = (2πT )−∞/2 e−(1/2T )

∫
B ′2 dV (B). (5.25)

If we interpret the∞ to mean 1+ 1+ 1+ · · · , we could interpret this asζ(0). Thus we
could interpretZ(yc) = C(yc)−ζ(0), whereC is independent of all the other parameters.
Accordingly, assumingy > 0, we will rewrite(5.24)as

Vol(O)eisc(yc)ζ(0)
∫∫

exp

(
y

∫
q(ψ)e2B

(
∫

eB)2

)
dν0,0
T (B)dt. (5.26)

whereT = 2/yc. In the next section we will see that this integral does exist, for orbits for
which d/dt is bounded and the stability subgroup is compact.

Thus, in contrast to what developed inSection 5.2, while our argument that dt×dV (B) is
a right Haar measure was not so strong, it does at least have the virtue of leading to integrals
that can be analyzed.

5.4. Rigorous discussion of integrals

As in [3] our basic method of establishing the existence and computing the integrals
above is to use a change of variables formula for Wiener measure.

Suppose thatf ∈ Path0,0
C2 R. Consider the transformation of the space Path0,0R given by

B(t)→ B(t)+ f (Ψ0,B(t)), (5.27)

where(0, B) andΨ0,B correspond as in(5.1)–(5.3).

Proposition 5.1. For f as above

dν0,0
T (B + f (Ψ0,B))

dν0,0
T (B)

= exp

(
− 1

2T

{∫
(f ′(Ψ0,B)

2− 2f ′′(Ψ0,B))

(
eB∫
eB

)2

+ 2f ′|10
})
,

implying∫
exp

(
− 1

T

{∫
1

2
(f ′(ψ0,B)

2−f ′′(ψ0,B))

(
eB∫
eB

)2
})

dν0,0
T (B) = exp(T −1f ′|10).

The Radon–Nikodym formula is a consequence of a nontrivial but standard formula for
transformations of Wiener space due to Gross (see pp. 110–111 of[11], with f in place of
bφ , and just remembering that ourf no longer satisfies the special conditionf ′|10 = 0).
But using a formal calculation it is easy to explain why the result is true. Formally the
Radon–Nikodym derivative is given by (withψ = ψ0,B )

dν0,0
T (B + f (ψ))

dν0,0
T (B)

= exp(−(1/2T ) ∫ (B + f (ψ))′2)
exp(−(1/2T ) ∫ B ′2) , (5.28)
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dν0,0
T (B + f (ψ))

dν0,0
T (B)

= exp

(
− 1

2T

∫
(2B ′f (ψ)′ + f (ψ)′2)

)
, (5.29)

Note thatψ ′ = eB/
∫

eB . Now calculate∫
(2B ′f (ψ)′ + f (ψ)′2) =

∫ {(
f ′(ψ)

eB∫
eB

)2

+ 2f ′(ψ)
(

eB∫
eB

)′ }
, (5.30)

∫
(2B ′f (ψ)′+f (ψ)′2) =

∫ {(
f ′(ψ)

eB∫
eB

)2

− 2f ′′(ψ)
(

eB∫
eB

)2
}
+ 2f ′(ψ)|10.

(5.31)

which formally implies the Radon–Nikodym formula. The second part ofProposition 5.1
follows from the first by integrating the Radon–Nikodym formula.

We can use this transformation formula to obtain an algorithm for computing the integrals
of the preceding subsection, especiallyRemark 5.1. For each fixedt , solve the differential
equation

h′′(t, x)− 1

2
h′22(t, x) = 2

c
q(x + t) (5.32)

subject to the boundary conditionh(t,0) = h(t,1) = 0. After the substitutionH = e−h/2,
this equation is equivalent to the Hill’s equationcH′′(x) + q(t + x)H(x) = 0, subject to
the boundary conditionH(0) = H(1) = 1, where of courseH must be positive.

We then calculate (where, as inSection 5.3, ψ = ψt,B )∫∫
exp

(
y

∫
q(ψ)e2B

(
∫

eB)2

)
dν0,0
(yc/2)−1(B)dt

=
∫∫

exp

(
yc

2

∫
(h′′(t, ψ)− (1/2)h′2(t, ψ))e2B

(
∫

eB)2

)
dν0,0
(yc/2)−1(B)dt

=
∫

e(yc/2)(h′(t,1)−h′(t,0)) dt. (5.33)

Now consider the special case in whichq is constant. In this case thet-translation is
irrelevant. We have

H = cos

(√
q

c
x

)
+ 1− cos(

√
q/c)

sin(
√
q/c)

sin

(√
q

c
x

)
, (5.34)

(which is positive providedq < cπ2), and

h′(0) = −h′(1) = −2H ′(0) =
√
q

c

1− cos(
√
q/c)

sin(
√
q/c)

. (5.35)

Thus forq < cπ2 we can apply (Proposition 5.1) to obtain the following.
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Corollary 5.1. Supposec, y > 0, and q is constant. Then∫∫
exp

(
yq

∫
e2B

(
∫

eB)2

)
dν0,0
(yc/2)−1(B)dt = exp

(
yc

√
q

c

1− cos(
√
q/c)

sin(
√
q/c)

)
,

providedq < cπ2, and diverges otherwise.

Note that the integrand on the left-hand side ofCorollary 5.1is an increasing function of
q, so that as soon as the integral diverges atq = cπ2, it diverges for allq > cπ2.

Remark 5.2.

(1) Whenq = cπ2 the integral presumably diverges because we really should have an
integral over PSU(1,1) \ D, rather than Rot\ D. For q > cπ2 the divergence is at
least heuristically linked to the unboundedness of

∫
e2B/(

∫
eB)2, which we observed

in Section 3.
(2) We can rewriteCorollary 5.1as∫

exp

(
yq

∫
e2B

(
∫

eB)2

)
dν0,0
(yc/2)−1(B) = exp

{
1

yc

(
x

sin(x)
− x

tan(x)

)}
, (5.36)

wherex = √q/c. Although possibly coincidental, it is worth noting thatx/ sin(x)
andx/ tan(x) are related to thêA-genus and theL-genus, respectively, which are
in turn related to theN = 1 supersymmetry which we considered inSection 2, via
elliptic cohomology (see[5,15]).

(3) To obtain orbital integrals corresponding to orbits above the universal Teichmuller
orbit, it is necessary to regularize the divergent integrals above. One possible approach,
which applies to the elliptic orbits, is simply to eliminate the up directions (2(n −
1)-dimensional for Elln). But this breaks theD-symmetry, and it is no longer clear
how to evaluate the integrals.

We can also applyCorollary 5.1to show that dνT (b)× dτ is asymptotically invariant in
a restricted sense.

Corollary 5.2. AbbreviatedνT (b) × dτ to dνT (ψ), viewed as a probability measure on
DC1. Then forφ ∈ D, we have∫ ∣∣∣∣dνT (φ ◦ ψ)dνT (ψ)

− 1

∣∣∣∣p dνT (ψ)→ 0 as T ↑ ∞,

providedp < π2.

Proof. In Section 4.2 of Chapter IV of[11] we observed that to prove this, using a dominated
convergence argument, it suffices to prove that

lim
T ↑∞

∫
exp

(
p

2T

∫
e2b

(
∫

eb)2

)
dνT (b) = 1, (5.37)
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see (3.2.19)–(3.2.21) of Chapter IV of[11]. This follows immediately fromCorollary 5.1,
with c = 2, y = T −1, q = p/2. �

Appendix A. The orbit method and ˜PSU(1,1)

In this appendix we briefly recapitulate some of the main points concerning the application

of the orbit method to ˜PSU(1,1).
The Lie algebra is

g = su(1,1) =
{(

iE p̄

p −iE

)
: E ∈ R, p ∈ C

}
. (A.1)

The Ad-invariant formm2 = E2− |p|2 (essentially the Killing form, which is nonexistent
in the Virasoro case) allows us to identify Ad and Ad∗ (andg with R1,2; hencem is rest
mass,E is energy, andp = p1 + ip2 is the momentum vector). The coadjoint orbits are
then precisely the rest mass shells.

The irreducible unitary representations of̃PSU(1,1) are well-known (see[12]). The
highest (respectively, lowest) weight series corresponds to the shells withm2 > 0 andE >
0 (respectively,E < 0), denotedO±m. The principal series corresponds to the tachyonic
shells withm2 < 0, and the complementary series involves an exotic inner product for a
nonunitary induced representation not clearly associated to any given orbit. We are mainly
interested in the first series, but in the end we will see that all three interact for small values
of the parameters, and inFig. 3 we have attempted to convey the topology of the unitary
dual.

Let H = {w ∈ C : |w| < 1}, and letκ denote the holomorphic cotangent bundle,
equipped with the Poincare Hermitian metric|(dw)|2κ = (1− |w|2)2. The group PSU(1,1)
acts by automorphisms ofκ (as a Hermitian, holomorphic line bundle), covering its action
by linear fractional transformations ofH, and

ω = curv(κ) = −i∂∂̄ log|(dw)|2 = 2i
dw ∧ dw̄

(1− |w|2)2 (A.2)

is an invariant symplectic form. For anym > 0 there is a corresponding action of̃PSU(1,1)
onκm/2. The (moment) map

µ : (H, curv(κm/2))→ Om,+ : w→ (p,E) = m

(1− |w|2) (2iw, (1+ |w|2))
(A.3)

is an equivariant isomorphism.
We now apply geometric quantization to this orbit. At this point we must make a choice.

Do we map the orbit to holomorphic sections of the corresponding line bundle, or do we
twist by half-densities? We will choose the first option (the ‘naive correspondence’). Either
way we would encounter surprises at a later point. Thus we associate to the orbitOm,+ the
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Fig. 3. Unitary dual of PSU(1,1).

unitary representation

˜PSU(1,1)×H 0
L2(κ

m/2)→H 0
L2(κ

m/2) :

(
a b

b̄ ā

)
, f (z)(dz)m/2

→ f
(−b̄ + az

ā − bz

)
1

(ā − bz)m
(dz)m/2 (A.4)

(H 0
L2 denotes holomorphic,L2 sections) where

|f (dz)m/2|2
L2 =

∫
H

|f (z)(dz)m/2|2
κm/2
ω =

∫
H

|f (z)|2(1− |z|2)m−2 dx ∧ dy

=
∑
n≥0

|fn|22π
∫ 1

0
r2n(1− r2)m−2r dr

= 2π

m− 1

∑
n≥0

|fn|2Γ (n+ 1)Γ (m)

Γ (m+ n) , (A.5)

andf =∑ fnzn.
[Note: Our realization above does not explicitly indicate why this is, in general, neces-

sarily a representation of the universal covering. To clarify this, it is convenient to realize
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˜PSU(1,1) as the set of pairs̃g = (g,A) ∈ SU(1,1) × C such that eA = a, g = ( a b

b̄ ā

)
,

and the multiplication is given by

g̃1g̃2 = g̃3, A3 = A1+ A2+ log

(
1+ b1b̄2

a1a2

)
.

The precise interpretation of(−b̄z + a)2m in (A.4) as a holomorphic function ofz ∈ H is
given by

(a − b̄z)2m = e2mA
(

1− b̄
a
z

)2m

, (A.6)

which (for nonintegralm) does depend upoñg, not merelyg.]
As it stands this space is nonempty only ifm > 1. However the “vacuum”(dz)m/2 has

norm squared 2π/(m− 1). It is therefore natural to rescale the inner product and define

〈〈f (dz)m/2, g(dz)m/2〉〉 = m− 1

2π
〈f (dz)m/2, g(dz)m/2〉L2. (A.7)

From the last expression in(A.5), we see that this renormalized inner product can be
analytically continued tom > 0, since the coefficientsB(n+1,m) = Γ (n+1)Γ (m)/Γ (m+
n) > 0.

For m = 1, i.e. for the representation corresponding toO1,+, there is a remarkable
geometric interpretation of the rescaled inner product, as an integration process at the ideal
boundary of the Poincare disk:

lim
m↓1

m− 1

2π
〈f (dz)m/2, g(dz)m/2〉L2 =

∑
n≥0

fnḡn =
∫
S1
f (dz)1/2ḡ(dz̄)1/2. (A.8)

The point is thatκ1/2 extends to the boundary, and its restriction toS1 is the same as the odd
spin structure onS1. The corresponding space of spinors,Ω1/2

odd = Ω0(κ|S1), has a Hilbert
space structure,

Ω
1/2
odd⊗Ω1/2

odd→ C : φ ⊗ ψ →
∫
S1
φψ̄, (A.9)

which is invariant with respect to the natural action ofD(2), the double cover. There is also
a SU(1,1)-invariant polarization

Ha = H+a ⊕H−a , (A.10)

whereH+a consists of boundary values of holomorphic sections ofκ1/2. The representation
H−a is the dual ofH+a , and it corresponds toO1,−.

Note that in the casem = 0, there is an intertwining operator

0→ C→ H 0(H)
∂→H 1(H)→ 0.

One of the puzzles of the orbit method, from our perspective, is that there does not seem to
be any geometric interpretation of the inner product in the cases 0< m < 1 (the part of the
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highest weight series which does not contribute to the Plancherel formula). Note that these
are not bizarre representations: For example undoubtedly the most important representation

of ˜PSU(1,1) is the oscillator or metaplectic representation, which is the sum of the two
irreducible representations corresponding to the orbitsO1/2,+ andO3/2,+ (hence is actually
a representation of PSU(1,1)(4), the metaplectic group).

Each of the representations above, corresponding to the orbitsOm,+, m > 0, has a
holomorphic extension to the universal covering of the complex semigroup PSL(2,C)+
(consisting of linear fractional transformations mappingD into D0), given by the same
formula(A.5).

Now consider the other direction of the orbit correspondence, from the character point
of view. By (A.5)(

eiθ/2 0
0 e−iθ/2

)
· zn(dz)m/2 = ei(n+(m/2))θ zn(dz)m/2. (A.11)

If we analytically continue into the disk, i.e. we consider the action of the universal covering
of C∗<1 ⊂ PSL+(2,C), then we obtain a regularization of the character

χm(τ) = tr(q = ei2πτ ) = eiπτm

1− q , (A.12)

where we have replaced eiθ by q = ei2πτ , Im(τ ) > 0.

Remark.

(a) (A.12) is the global expression for the holomorphic character, because the conjugacy
classes of PSL(2,C)+ are parameterized by|q| < 1 (see 1.3 of[2]).

(b) Harish-Chandra developed another method of regularizing the trace, by initially viewing
it as a distribution and eventually proving that the distribution is defined by a function
on the regular set; when one takes the limit of the above formula at the boundary, one
obtains Harish-Chandra’s formulas for all the different components of the regular set
(see 1.5 of[2]).

Now assume thatm > 1. The Kirillov character formula is given by

χm

(
exp

((
x

−x
)))

=j (x)−1
∫
Om−1,+

e
−i
〈( x

−x
)
,
( iE p̄

p −iE

)〉
ωOm−1,+ ,

(A.13)

wherej (x) = det1/2
(

sinh

(
ad

(
x/2

−x/2
)))

/ad

(
x/2

−x/2
)
= sinh(x)/x,

which reduces to the calculus identity

emx

1− e2x
j (x) =

∫
H

e(m−1)x(1+|w|2/1−|w|2)(1− |w|2)−2 dw ∧ dw̄. (A.14)

Note that in the Kirillov formula, the orbit has been shifted byδ, half the sum of the positive
roots. This calculation is valid only form > 1. However(A.13) is also valid form = 1,
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whereO0,+ is the forward light-cone, which can be obtained by taking the limitm ↓ 1 (or
direct calculation).

An apparent paradox of the orbit method is that there does not seem to be room for
an orbital interpretation of the characters that correspond to 0< m < 1 (and if we had
used half-densities previously, when applying geometric quantization, we would not have
attached these representations to any orbits at all). This phenomenon is closely related to the
existence of the complementary series of unitary representations, and is perhaps related to
our failure in the text to find orbital integral representations for the discrete series characters
of the Virasoro algebra, which involve small values of the central charge.

As described in[12], one can parameterize the principal and complementary series by
C(τ )q , whereq is the value of the Casimir operator, the spectrum of the translation subgroup
R ⊂ P̃SU(1,1) is exp(2π i(τ+Z)), where 0≤ τ < 1, andτ(1−τ) < q. Form < 0, the orbit
Om corresponds to the family of principal series representationsC(τ )q , whereq = (1/4)+m.
The characters of these representations can be represented as orbital integrals (the parameter
τ corresponds to the specification of a character for the stability subgroup of the orbit). The
complementary series corresponds to theC(τ )q with q ≤ 1/4; the corresponding characters
apparently do not arise as orbital integrals. For any fixedτ , in the topology of the unitary
dual, we have

C(τ )q → Dτ + D̄1−τ as q ↓ τ(1− τ). (A.15)

By mapping the(τ, q) strip to the plane minus the unit disk centered at(1
2,0), we obtain

the picture shown inFig. 3of the unitary dual, which is intended to convey the topology.
In this picture the representations correspond to the points along thez-axis and the

xy-plane minus the unit disk centered at(1,0). Form > 2 the highest (respectively, lowest)
weight representations are along the upper (respectively, lower)z-axis. Asm decreases from
2 to 0, the representations wind counterclockwise (respectively, clockwise) around the unit
circle centered at(1,0), reflecting the limit(A.15). From a geometric point of view, the
critical nature ofκ and κ̄ (m = 2) corresponds to the fact that the corresponding Hilbert
space islocally conformally invariant. The geometry of the picture also reflects the critical
nature ofκ1/4 andκ̄3/4 (m = 1).

Notably the picture does not suggest the critical nature ofκ1/2 andκ3/2, which correspond
to the metaplectic representation and the interface with the Heisenberg algebra. This is
analogous to the apparent fact that the orbit picture for the Virasoro algebra does not hint at
the existence of the discrete series unitary representations, which are related to an interface
with affine algebras via the coset construction.
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