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Abstract

Using the finite dimensional example E‘S/LTl,/l), the universal covering of PSW, 1), as
a guide, we revisit the orbit method as it appliesRpthe universal central extension Bf =
Diff *(S1). We clarify some aspects of the classification of coadjoint orbits, determine boundedness
properties of the natural height function on these orbits, and calculate orbital integrals.
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1. Introduction

Let G denote a connected real Lie group. The orbit method of Kirillov, Kostant and others
aims to establish a qualitative correspondence between data associated to integral coadjoint
orbits of G, on the one hand, and irreducible unitary representatioGs oh the other hand.

In the forward direction one applies the methods of geometric quantization to produce a
representation, and in the reverse direction one computes a momentum map (applied to an
orbit of highest weight vectors, if this exists) or a transform of the (properly interpreted)
character of a representation, to obtain a coadjoint orbit. These prescriptions are in general
ambiguous, as they should be, since the method attempts to relate quantum and classical
phenomena (sdé&]).
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This paper concerns the orbit method, as it applies to the universal central extension,
D, of D = Diff t(S1). This infinite dimensional example has been considered previously
by many authors, especially Kirillov (s¢&-8] and references), Sedal3—15] and Witten
[17].

The plan of the paper is the following. Bection 2we review the classification of the
smooth coadjoint orbits with central charge# 0, due essentially to Kirillov and Segal
[6,13,14] Forfixedc > 0, there is a faithful monodromy map from orbits with central charge

¢ to the space of conjugacy classedP&L(2, R), the universal covering of P$2, R), as
depicted inFigs. 1 and 20ur aim is to generally clarify the classification, in particular by
explaining why the monodromy mapping is natural (specifically, exploiting an observation
of Kirillov linking supersymmetry and the form of the coadjoint action), and adding some
details concerning representatives of orbits.

In Section 3we consider boundedness properties afddon these orbits. This question
was considered locally if1 7], and the corresponding global question was posed there. We
find that with the exceptions of a single parabolic orbit, the ‘universal Teichmuller orbit’,
and those orbits below the Teichmuller orbit, as depicteBig 2 d/dé is unbounded.

This leads to an intuitive picture of what the various coadjoint orbits look like, from a
Morse-theoretic point of view.

In Section 4we have recapitulated some of the standard structure theory for the Virasoro
algebra, and the orbit correspondence that one would naively expect for highest weight
representations. Utilizing the momentum map point of view, the orbit method predicts that
unitarizable highest weight representations should correspond to nonparabolic orbits with
d/d® bounded. We use this to complete one part of the argumeSgdtion 3

In Section Swe consider orbital integrals. For any Lie groGpa coadjoint orbitD cC g*
has a canonical symplectic forwp. If G is finite dimensional, the corresponding volume
element defines &@-invariant measure supported 6h which can often be interpreted as a
tempered distribution. One can thus consider the Fourier transform

@(x) = / g ilxA) iwd, X € g, (1.1)
o d!
which is necessarily A@-invariant. OfterD can be computed exactly because the integrand
can be interpreted as an equivariantly closed differential form; in particular @hsran
integral coadjoint orbit, Kirillov and others have proved in many cases that

O(x) = j(x)xo(€"), (1.2)
where

a2 sinh(ad(x/2))>

j(x) = det" (—a /D (1.3)

andyp is a character of a unitary representation associated to the orbit by geometric quan-
tization (see Section 7.5 ¢f,7]).

For an infinite dimensional group the preceding integrals and formulas do not literally
make sense. However, in the context of loop groups, Frenkel has given a plausible inter-
pretation of(1.1)and proved a formula of the for(i.2), involving the coadjoint orbits for
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the universal central extension, the characters of the positive energy representations, and
Wiener measurg3]. It is intriguing to note that fo, the j function is essentially the
function.

In Sections 5.1-5,3here is an extended heuristic discussion of the possible meaning
of (1.1). The interpretation we eventually focus on involves conditioned Wiener measure
(specifically, ‘the Malliavin—Shavgulidze measures’)Section 5.4ve prove that the naive
integrals exist precisely for those orbits which are “below” the critical universal Teichmuller
orbit, and they can be evaluated. The form of the answer is somewhat surprising. The
integrals are expressed in terms of the power series foAthenus and.-genus, which
possibly suggests some further link with supersymmetry. The formulas can be applied to
obtain a weak form of asymptotic invariance for the Malliavin—Shavgulidze measures.

In part Il of this paper, we will elaborate on Kirillov's work on the geometric realization
of the unitary highest weight representations (€& and[8]).

In Appendix Awe have recalled some well-known facts concerning the orbit method as

it applies toPSU(1, 1). This is a fascinating example, which remains mysterious despite its
fundamental status. In particular, the interaction between the highest weight, principal and
complementary series, for small values of the mass paramétés especially noteworthy
(seeFig. 3, which follows from work of Bargmann).

Notation Throughout this paper we will vieW = vect(S1) as the Lie algebra db. This
means that the bracket of two vector fields is given by

d d , d
—e— | = —fgH)— 1.4
[fde’gde] (f'g g)de’ (1.4)
which is the opposite of the bracket one obtains by viewing vector fields as differential

operators. _
The universal covering dP, denotedD, will be identified with

(C® W:R>R: ¥=>=0 Wwit+1l)=w(@+1), (1.5)
where
Do>D:iW -y, YE)=em¥0, (1.6)

The real Virasoro algebra, the universal central extensidy) denoted as
0>Rc—>V—>V—0 1.7)

will be realized using the cocycle

Y (v, w) = %/Vu d(Vw), (1.8)

whereV denotes the Riemannian connectiongni.e. V(f(d/dr)) = df ® (d/dt). One
can think of this extension invariantly by viewirg as a section of a line bundle over the
space of all affine connections 6A. But for notational simplicity we will prefer to have a
fixed coordinate at all times.

At one point we will consider the oriented 1-manifaldthe unit interval. We denote
the corresponding group of automorphismsI®y or Aut(/), and its Lie algebra byp or
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aut(/), which consists of vectorAfieIds vanishing at the endpoints, where the D stands for
Dirichlet. The Virasoro extensiolp is defined by the same formula as above.

2. Classification of coadjoint orbitswith ¢ # 0

Using our preferred coordinatefor S, we have a fixed vector space decomposition
V = V@ Rk. With respect to this decomposition we can identify the duab efith the
space

V' =Re* @ V*, (2.1)

whereV* is naturally identified with the space of distributional quadratic differentials on
st

In this section we are principally interested in the action on the smooth part of the dual,
Re* @ Q ¢ V', whereQ = [g(dr)2 : ¢ € C®(SL,R)}. The affine spacesc* + Q,
¢ # 0, are invariant under the coadjoint action. The basic problem is to determine the orbit
structure.

The analysis proceeds as follows. First (following Kirillov and Segal) one observes the
nonobvious fact thatk * + Q is equivariantly isomorphic to a natural but nonstandard action
of D on Hill's operators. The fact that this second action is natural is neatly explained by the
existence of a canonical superalgebra extension @ = 1 superconformal symmetry;
for an historical account of the discovery of this structure[$6p. Secondly, one observes
(following Kirillov and Segal) that the space of Hill's equations is equivariantly isomorphic
to the space of real projective structures $ hence that the orbits are separated by
their monodromy, properly interpreted as conjugacy classes in the universal covering of
PSL(2, R). Finally, one determines the image of the monodromy map, which involves an
analysis of stabilizers, initiated by Kirilloj6] and reconsidered by Wittel7]. In the
process we find representatives for the orbits, and the corresponding stability subgroups.

In the last section we consider the slight changes necessary in the open string case.

2.1. N = 1 supersymmetry, monodromy and smooth coadjoint orbits 610

There is a canonically associated superalgebra extensipn of
sV=02te 712 (2.2)
where2—1 = VY has the usual Lie structure, and the commutator map for odd variables
VgV o1 (2.3)
is multiplication of half vector fields (where in this paper we understand this square root in

terms of the trivial periodic spin structure). Since the r{@ag)is clearlyD-equivariants)
is indeed a superalgebra. There is also a central extension

0> R—sV—>sV—>0. (2.4)
As aZp-graded vector space
sV=Ve 212 (2.5)
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The multiplication of odd variables is given by the symmetric map
QNP VS5V 0w > 0w — </ V(QD)V(W)) K, (2.6)

note thatv(®) is a half form, so that the integral is well-defined. To check that this does
indeed form a superalgebra, we need to checRteguivariance of2.6). This reduces to
checking the identity

(VW) = —/ {(—vq&’—i—%v’(p) v+ ¢ <—v¢/+%v/w) } (2.7)

whereV = v(d/dr), @ = ¢(dt)2, ¥ = ¥ (dr)2. The LHS of(2.7)is (1/2) [ v'(¢¥)”, and
a straightforward calculation shows that this is exactly the RHS.
Dual to the multiplication mag2.7), there is @-equivariant map

V' s2(2-Y2x, (2.8)

To compute the map suppose tlat + g € V. The corresponding symmetric bilinear
form on2~%2 s given by the composition

Q2@ Y2 IR,

d\ 12 d\ 12 d
f(a) ®8<§> — gy - (/ f/g’dt>/< - /{—Cf’g/—l—qu} dr.  (2.9)

If ¢ isan ordinary function, this is the symmetric form that corresponds to the Hill's operator
et +qdn?: Y2 o %2 c (@72, (2.10)

where*(f(d/dn)¥?) = f”(d/dr)¥2. This is Kirillov's explanation of the following
lemma (see the cryptic comments in Section 7.60F.

Lemma 2.1. The coadjoint action oD onck™* + Q, ¢ # 0, is isomorphic to the natural
action of D (by conjugatioh on the space of Hill's operators

fec* +q(dn?: 2752 - %2 g e C(STR)}.

A real projective structure for an orientedmanifold C, with universal coveringC, is

a pair(M, f), whereM : Aut(C) — Aut(RP") is a (monodromy) representation and
f : C — RP" is aM-equivariant orientation-preserving immersion. Two such structures
are isomorphic if they differ by the natural action ofas Aut(RP") on such structures,

g: (M, f) = (Mg 1, g o f). There is a natural action of AUE) on such structures by

o (M, f) — (M, f oo—1) which preserves isomorphism classes.

In the one-dimensional case the projection PSRR) — RP! : ¢ — gP(1,0) is a
homotopy equivalence. As a consequence(fes ST an isomorphism class of projective
structures, (M, f)], determines a conjugacy class in the universal cé®¥8L(2, R) of
PSL(2, R), sincef determines a homotopy class of paths from the identit td), hence
an eIemenin(T) coveringM (1). Kirillov and Segal independently noted that this leads to
a classification of smooth coadjoint orbits tog O.
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Proposition 2.1. There is aD-equivariant map from Hill's operatorsas inLemma 2.1to
the natural action on isomorphism classes of projective structuregtpgiven by

cic* + q(dr)? — P(u, uz),

whereus, up € 22 is a pair of independent solutions of'c# qu = 0. This map is an
isomorphism. The monodromy map

ek + Q = [PSL2, R)] : ex* + q(dn? — [F(D)], (2.11)

where F is the unique lift of the fundamental solution @f/d6)? + ¢, separates the
coadjoint orbits

For notational simplicity, letG and G denote PSI2, R) and its universal covering,
respectively, viewed as abstract Lie groups. EktHyp andPar denote the sets of elliptic,
hyperbolic and parabolic elements 6f respectively; the corresponding inverse images
will be referred to as the elliptic, hyperbolic and parabolic elements,akspectively.

To work with G, it is convenient to identifyG with PSU(1, 1), which we view as a
subgroup ofD. The Poincare rotation number

~ 0" (t)
p.:D—>R:oc— lim
nfoo n

(2.12)

exists, is independent of and defines a continuous central functionfarThe restriction

of p to G is characterized by: (j) is integral on nonelliptic elements 6F; (i) p(o +n) =
p(o)+n,foralloc € G,n € Z = C(G); (iii) p(t — t + 10) = 1o for 1 € R. (Proof. Any

g € G has a fixed point as a transformation of the closed disk, by Brouwer’s fixed point
theorem. Ifg is nonelliptic, then its fixed points are on the circle. Thus for a nonelliptic
g € G, there exists such that shiftss by an integer. This leads to (i). Parts (i) and (iii)
are obvious.) This leads to the following standard picture of the conjugacy clasSesof

G.

In this picturer denotes the projection from conjugacy classes t6 conjugacy classes
of G. The projectiontr| isthe mapG — R : g — |tracgg)| (thusg is elliptic, parabolic, or
hyperbolicifand onlyiftr| < 2,=2, >2, respectively). The bifurcation point corresponding
to the heighto = n involves three points: € C(G) (thus 0 corresponds to the identity
in G), and the conjugacy classes Parepresented by the parabolic elemebits® + n,
respectively, wher& is the unique element @ which covers the unipotent element

<1 i) € PSL(2, R)

and has a fixed point as a transformationRofAs |tr] | 2, Hyp, has{n} and Pa;lf as
accumulation points, and the points Pdrave{n} in their closure (so that the topology
is not71). The image of the exponential map exp - G is the union of Hyp and the
closure of the set of elliptic elements (for an alternate picturej4ee

In terms of this picture we can now state the fine classification of orbits, essentially due
to Kirillov. (Note: In [6], where the statement of the classification first appeared in a very
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‘\ Par; Hip,
2)
Ell,
Par Hyp,

Par; Hyp,
0 P 0 -
‘ < / Par,
Ell
Par, Hyp_,
1 -1
/ Par’,
Ell,
2 2 Par?, Hyp_,
Par,
n
n
eZTcip
4—
I
0 2

Fig. 1. Conjugacy classes of PELJ1).

nearly correct form, there are several assertions which appear without proof, many of which
are completed ifil 7]. A complete proof, which is quite lengthy, can be foundZh)

Theorem 2.1. Fix ¢ > 0. The monodromy maf2.11)induces a bijective correspondence
between the smooth coadjoint orbitsifwith central charge ¢ and the set of conjugacy
classes given byp > 0} \ {{0}, Pag}, in terms ofFig. 1 These coadjoint orbits are
represented by the following potentials

Q) g) =0 representsParar, with stability subgrougRot(S1);

(2) q(t) = ch, h < 0, represents the orbit dflyp, with [tr| = 2 cosh(v/—h), with stability
subgroupRot(s1);

(3) q(t) =ch h > 0,h # (n7)? (n € Z), represents the orbit of Ell with = (1/7)v/,
with stability subgrougRot(S1); -

(4) q(t) = c(nm)?, n > 0, represents the orbitn} ¢ C(PSL(2, R)), with stability sub-
groupPSU™ (1, 1) ¢ D (seeSection 4oelow);

5) ey = c(nn)z <1+ 20 sin(2znt) (2 + sm(2nnt))) ’

07
(1 + a sin(27nt)2 -
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Par; Hyp,
Teichmuller Par-
Orbit = {1} 2
\ Par} Hyp,
Par
Ell,
* Par;
Hyp,

Fig. 2. Smooth coadjoint orbits,> 0.

represents the orbit oHyp, with |tr| = 2 cosh(a/2v/1 — «?), with stability subgroup
exp(RE(,,«)) X Zy, Where&(, o) = sin(2znt)(1+ « sin(2wnt))(d/dr), Z, is identified
with the nth roots ofl in Rot(S1) and0 < « < 1;

20 (1 + sin(2znt) & 2« cosz(Znnt))>

1+ o sin(2znt))2
represents the orbi?alff, with stability subgrouexp(RE(,, +)) % Z,, where&, 1) =
(1 4+ sin(2ent)(1 + o sin(2znt))(d/dr), Z, is identified with the nth roots df in

Rot(s1), for any choice ofr with0 < o < 1.

> 0,

(6) q(ja) = c(nm)? (1 +

It is convenient to think of this parameterization in the following way.

Remark 2.1.

(a) The point of emphasizing this picture, rather tkém 1, is that in this paper we cannot
detect any significant qualitative differences between the Virasoro orbits corresponding
to the classes Hyp Pagr and Elh. This is surprising from the PSR, R) point of view.

(b) The most interesting orbit is the one corresponding jan (4) of Theorem 2.Jabove,
which is the first bifurcation point as one ascerkg. 2 This orbit, together with
its symplectic structure, can naturally be identified with (a dense subspace of) Ber’s
universal Teichmuller space, together with its Weil-Petersson Kahler strjta]réVe
will refer to this as the universal Teichmuller orbit.

2.2. Symmetry group df

In this section we note the slight changes necessary to classify the smooth coadjoint orbits
for the symmetry group of, the oriented unit interval, again for central chargg 0.

Let Dp denote the group of orientation-preserving diffeomorphisma dhe rationale
for the notation is that the D stands for Dirichlet, as opposed to the periodic conditih for
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Remark 2.2. There is an injectiorDy = D1 — Dp (essentially the identity map in
terms of the coordinat®. But this is far from an isomorphism because the image consists
of diffeomorphisms with relations between the derivatives at the endpoints. One might
naively expect thaDp would be the appropriate symmetry group for open string theory.
Butin fact, in the present state of string theory, in which a background space—time is always
posited, it isD1 which is the relevant symmetry group.

The Lie algebra, denotetlp, consists of vector fields along which vanish on the
boundary. There are Virasoro extensions

0— Rk - Vp — Vp — 0, (2.13)
0— Rk — sVp — sVp — 0, (2.14)

both given by the same formulas as in the periodic case, vmgnléz consists of half vector
fields that vanish on the boundary.

Remark 2.3. The Virasoro cocycle is in fact a cocycle for the larger algebra Vot
the point is that verification of the cocycle property does not involve an integration by parts,
so that the Dirichlet condition on vector fields is irrelevant.

Similarly, there is a superalgebs&ect(/). On the other hand, th¥ = 1 superalge-
bra(2.14)depends upon the Dirichlet condition in an essential way; the point is that the
verification of the identity(2.7) does require an integration by parts.

In this case we sePp = {q(dr)? : ¢ € C*(I)}, and the smooth part of the coadjoint
action

Dp x (ck™ + OQp) — ck™ + Op (2.15)
is equivalent to the natural action ®p on Hill's operators
fex* +q(dn?: 2577 — %2 g e (D)}, (2.16)

provided thatc # 0. This is in turn equivalent to the action on isomorphism classes of
projective structures o, i.e. immersions of into RP, modulo the action of PSP, R).

Let ~ denote the equivalence relationBag corresponding to the partition (0, 1), 1,
(1, 2), ....Given aprojective structure dnthe images of 0 and 1 may or may not coincide.
If the images coincide, we define the winding number of the structure in the usual way; this
number is an integer. If the images do not coincide, then we define the winding number to
be the intervaln, n 4+ 1) if n is the largest integer such that the map defining the structure
coversRP! completelyn times.

Proposition 2.2.
(a) The orbit structure for the actio(®.15)is determined by the map
pD - ck* 4+ Qp = Rxo/ ~,

where a Hill's operator is mapped to the winding number of the corresponding iso-
morphism class of projective structure
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(b) A representative for the orbit corresponding to the class af & 0 is given by
2
q = Cw”.
(c) If w =nisintegral then(DD)q:cnz = PSU1, 1)5") (seeRemark 2.2, and otherwise
the stability subgroup is trivial

Proof of Proposition 2.2. Itis clear thatthe winding number is constant on orbits. Given two
projective structures with the same winding number, by applying an appropriat@ FSL
transformation, we can suppose that their initial points coincide, and the same for their final
points. By considering the map defining the first projective structure, followed by the local
inverse to the map defining the second projective structure, we obtain a diffeomorphism of
I which relates the two projective structures. [To put this another way, consider the domains
of the two maps. Mark off the points that go to the image of the first point (which is the
same for both maps). The first subinterval for each map wraps exactly once &tnd
hence we obtain a diffeomorphism between these two subintervals. We now consider the
second subintervals, and so on.] O

3. Boundedness properties of d/d¢

We return to the case of*. Using the parameterization of coadjoint orbitsit + Q
by conjugacy classes, we can view the rotation number as a function on this space of orbits.

Theorem 3.1. Fixc > 0.

(a) The function{d/dt, -) is bounded on &-orbit O C cx* + Q if and only if either
p(0) < 1,0r p(O) = 1andO is either the universal Teichmuller orbit &ar; .

(b) An orbit has a critical point if and only i© is represented by a constant potential
which case the constant potential is the unique critical point

Proof of Theorem 3.1. Throughout this proof all integrals will be understood to be over
the interval [Q 1]. We begin by recalling that the coadjoint action of the Virasoro algebra
is given by the formula

Ad%:bX(RK*@Q)—)RK*@Q,
Ad;:)(afl)(c;c* +q(dn)?) = ck* + 0¥ (g(dn?) + 2cSo), (3.1)

whereS(o) = (In o’)" — %(In o')’? is the Schwarzian derivative (sf&13]). Thus

d ko _—1 * 2
<E’Adf/(a Yek™ + g (dt) )>

_ / {q(o)a’2+ %S(o)} dr

= / {q(o)a’z— %b’z} dr = f {q(a)(fe:)2 - %b’z} dr, (3.2)

where Ing’ — In ¢/(0) = b.
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We now suppose thatis constant. In this case we can write our functional as

_ erb ¢ 2
L(b) = q(feh)z — Z/b , (3.3)

whereb € Pat?'°R, b = In ¢’ — In ¢’(0). If ¢ is nonpositive, then Holder’s inequality
implies thatL (b) < ¢ = L(0). Thus the functional. is bounded and the maximum occurs
at the constant potential representative for the orbit.

To prove that the same is true for apy< c7? requires a more sophisticated argument.
One method, although quite roundabout, is to use some elementary facts about the unitary
highest weight representations. We can supposecthat 1. As we show inSection 4.2
below, each of the orbits representedby. crr2 has a Plucker embedding into the projective
space of a unitary lowest weight representation. The basic point is that in this context,
classical and quantum energy are identified for elements in the Lie algebra, and it is easier
to study the energy operator on the linear representation space than on the curved orbit
space. Since the representation is of positive energy type, this implies the same for the
corresponding coadjoint orbit. To be precise(4nl6)takes - v in place ofvg andLg in
place ofx. This implies that the orbit of any < ¢7? is d/ds-bounded.

Now consider the orbit Par Consider arepresentatiydor this orbitas in (6) ol"heorem
2.1

1+ sin(®) — 2« cosz(e)) 0 — o (3.4)

_ 24 _
=7 <1 2 2 sin(0))2

where we may choose any & o < 1. If we choosex < 1/4, then 1+ sin(9) —
20 cos?() > 0, which implies thay < 2. Thereforg(3.3)is bounded by

b

cr? fez 5 — E/b’z < cm?, (3.5)
(Jfe)” 4

where we have used the bound for the universal Teichmuller orbit.

We have now shown that/dr is bounded in all cases claimed in (a). We now aim to show
that d/dz is not bounded for a constant potentjab- c72. Suppose that we consider the
critical valueg = cr2. In this case we know that the stability subgroup jumps to ASD).

We have been consideringdt as a function on the total space of the bundle

PSU1, 1)/Rot — D/Rot — D/PSUL, 1). (3.6)

The function ¢fds has the constant valuer? on the entire fiber PSU, 1)/Rot, over the
basepoiny = cr?. Itis easy to calculate this fiber. Consider the hyperbolic element

¢ = (;’ j) e PSU1, 1)1,

wherec = cosh(g), s = sinh(8). Thenby (1) = In (®'(1)/®’(0)), where

2p: z
¢ (CZ+5)/(SZ+ ¢) - (SZ+ ¢)?
1 1
~ 2152+ cRcos(2nt) cosh(28) + sinh(28) cos(2rt)”

Q' (1) = = |cz+ 5|72

(3.7)
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This is a one parameter family of maxima, with paramgteBince we can also act upon
these solutions by rotation, we obtain a two parameter familyspideforming the obvious
critical pointb = 0, which we can write as

1+ Acos(2rT)

b t :2|n ’
A,T( ) 1+ Acos@r(t+T))

(3.8)

where|A| = [tanh(28)| < 1, andT is 1-periodic.

The important point for our purposes is that this family of critical pointdforD/Rot —
R is not a compact set in tH&® norm for the space dfs. As A 1 1 we have the following
pointwise limit:

2 2
2in| ———— 2iIn[{ —————— ) =4 In(csdn)). 3.9
(1+ Acos(2m)> - <1+ cos(2m)> (esdx)) (3.9)
This limit is not a continuous function. Therefore, the' norm of this family diverges to
+ooasA 1 1.
We thus have, fog = cn?,
ST e,
q(febT)z — Z/ AT = CTT (310)

forall A < 1, whereas the energy integrﬁlbf’r is diverging asA 1 1. This implies that
for ¢ > cn? the left-hand side will diverge ta-oo asA 1 1. This shows thaL is not
bounded on orbits which are represented by a congtant2.

We have now proven (a) for orbits represented by constants aqd Racomplete the
proof of (a), we must show that/dr is not bounded on all other orbits of parabolic and
hyperbolic type.

Consider one of our preferred representatives for a hyperbolic orbit as inTheofem
2.1, which is of the forme(n)? + g1. As in the earlier part of this proof, we consider a
hyperbolic elemenp € PSU(1, 1) which is of the formp = R o ¢o o R~1, where

N

c S
¢o = ( ) € PSU1, 1)1,
C

¢ = cosh(B), s = sinh(B8), andR is a rotation. We choose the rotation so tthdtas fixed
points+e?"7 | +e?i7 s an attractive fixed point, angh (e?"'7) > 0. As we calculated
above by will equalbs 1 as in(3.8). Recalling(3.10)in the case: = 1, and remembering
the analogous quantity blows up fer> 1, we see that3.2) will be at least

[ a1 (€M) p(t)~*

(f p0-?)?

@7 [p~4 N [1q1(¢) — q1 (&)} p=4
(/ p~2)? (f p~2)°

c(nJT)2 +

=c(nm)? + , (3.11)
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wherep = 1+ A cos(27(r + T)). Leta = A~1. By explicit calculation

[r* _ (3a + 2a%)n
(fp—z)z T @-D*A+a)3/A+a)/a—-1)

y ((a —1D2a+DJ@TD/@=1 )2

(3.12)

2am

which is asymptotic ta5/4v27)(a — 1)"Y2 asa | 1 (i.e.A 1 1), and hence diverges.
To show that(3.11)diverges, it therefore suffices to show that the second ter¢8.ir1)
divided by(a — 1)~%/2 has zero as a limit ag 1 1.

Suppose that we fix > 0. We have

11— tanh(B)||z — €'

_ iT, _ —2miT N _ 1] —
6(2) — 7| = |po(e 2" 2) — 1] = €27 ztanh(B)|

(3.13)

for z € S1. Forz # —e?™'T thistendsto 0 agl 1 1 (or g — o0). Fix § > 0 and split
the integral in the numerator of the second ternf311)into two, one ovett — T'| > §
and the other ovelr — T'| < §. For g sufficiently large, and foyr — T'| > §, we will have
lq1(9(e¥™1)) — q1(e®"'T)| < €. Therefore, using3.12) we see that

Ji—r126@1(®) — g€ 7)) p~* 6

< -2 3.14
(fr2)° “ava Y o

for g sufficiently large. Now consider the other term
Ji—r1=s(@1(@) — g€ T)p~*
(fr2)°

Fort close toT andA 1 1, p(¢) is near 2. Sinceg is independent of the parametérand
(f p~%)~?tendsto 0 agt 1 1, we can choos&so that forA near 1, this term is as small as
we wish. This concludes the proof ti&@t11)diverges ast 1 1. Hence ddr is not bounded
on hyperbolic orbits.

This same argument works for an orbit of parabolic type/Par> 0, as well. But in this
case there is another more direct argument. In (6)leforem 2.1we displayed a family
{q(+n’a) : 0 < o < 1} which belongs to this orbit. We have

(3.15)

11+ sin(27nt) 4 2« cos?(2nt)
(14 a sin(2rnt))2

d + 2 2
<E,CK* + 4000 dr >= cnm)“(1+ 20()/(;

(3.16)

Asa 1 1, by considering the integral localized near points where the denominator is near
0, one sees that the values of the integrals tergsa This shows that &t is not bounded
on Paf .
To see that ddz is not bounded on Parn > 1, we can observe that the representatives
9 (n.0) CAN be made as close to a constant as we wish, by lettipdd. Since ddr is not
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bounded on the orbit af(n)?, it follows that d/d is not bounded on Parn > 1. This
completes the proof of (a) dtheorem 3.1

To prove part (b), consider a general Lie graryd-ix an element of the Lie algeblac g.
We considelV as a function on a coadjoint orlfit C g*. A point f € Ois critical for V if
and only if the identity inG is critical for the function : G — R : g — (V, Ad*(g) f).
Since

dL|1(X) = (V,ad"(X) f) = ([V, X], f), (3.17)
fis critical for V on QO if and only if f vanishes on ad’)(g). Applying this to our context,
with V = d/dr andg = ck* 4 ¢(dr)?, it is easy to check that must be constant. [
Remark 3.1.

(a) For the benefit of the reader, we briefly summarize the local analysisnof3.3) (see
also[17]). We have
[e?B e~ [ [eB c//,
dL|(B) = 2 —— | B 3.18
n(B) = 2¢ ) 5 (3.18)

Thus if b has two derivatives and is a critical point, thénsolves the following
integro-differential equation

Ly @
b+ 4q . -0 (3.19)
o (e

Note that this equation is invariant under rotation, b@) — b(t + T) — b(T), as it
must be. Also it follows thak = 0 is a critical point.
The second derivative is given by

(3) e H/e%bz ([¢) +[eiafe [eiafei[e
x/ebz;_/e%/ebb/ebb'_/e%/eb/ebz;Z}
(fo)-(Jen(fe) [ <]
a(fe) fel(fe) s

At a general point this is pretty useless. However, at the critical poiat), we have

. . C g ad C
Hess$,—o(b) = 29 / b2 — > / b2 = ; {2q - 5(2mz)2} @ +8?3, (321

whereb = " {a, sin(2znt) + B,{ cos(2wnt) — 1}}.
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This Hessian, at the poitst = 0, is negative semidefinite if and onlyjf < c72.
More generally at each bifurcation point, asncreases, we pick up another positive
eigenvalue for the Hessian, always with multiplicity 2.

(b) Theorem 3.leads to an intuitive picture for the orbits from a Morse-theoretic point
of view. The orbits below and including the universal Teichmuller orbit are infinite
dimensional analogues of — |x|2 = 1, withz < 0. The orbit Paf is an infinite
dimensional analogue of — |x|?> = 0,7 < O (since the maximum is missing). The
hyperbolic orbits are analogous to the one sheeted hyperbdleidx|? = —1. The
novel feature is that the elliptic orbits Elhbove the universal Teichmuller orbit are
saddle-shaped, with(2 — 1) directions pointing up.

4. Virasoro structure and Kirillov’'s orbit correspondence
4.1. Virasoro structure

The complex Virasoro algebir is given in terms of generators and relations by

Vir = (Z (CLn) @ CK, (4.1)

nez
where

(L, L] = (1 — m)Lyym + &5n(n® — D8 +m)K, [L,, K] =0. (4.2)

Given our choice of cocyclél..8), the relation between Vir anfz](c is given by the mapping

Vir — f)(c

1 i d 1d 1

— — L ——+ =K. (4
=o€ g "0 Lompag oK (43)
(There is freedom in the choice of cocycle definfngand we could eliminate the %2and
the shift inLg by replacing(1.8) by

—1
S [verava, (4.4)
Tl

whereV (f(d/0z)) = (3f/92)(9/92)).
The Virasoro algebra has a triangular decomposition, in the technical se@evdfiere

K — 127ik, L,

n*= >"CL, and h=CLo&CK. (4.5)
+n>0
The roots arda, = nap : n € Z\ {0}}, where
ai1(Lo) = -1, a1(K) =0, (4.6)

andL, spans the root space fey. It is natural to define

1 1 1
5= (Z na1> = St(-Doy =~ e, (4.7)

n>0
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For eachm > 0, there is an embedding

00 1
dij, : sl2, C) — vir : — fuo=—-L_,,
1 0 n
10 b = Lo+ = - DK 01 3 (4.8)
— = — — —> = — . .
0 -1 e TR »\o o) 7T

Geometrically this corresponds to the following. The group of projective transformations
of C which map the circle to itself is the subgroup R&LL) c PSL(2, C), where

a b az +b
_ == i —. (4.9)
b a bz +a

Forn > 1 there is am-fold covering map

st stz 7=27 (4.10)

and the diffeomorphisms afwhich cover the projective transformations6form a group
PSU1, 1) which is ann-fold covering

0— Z, - PSUL 1™ — PSU1,1) — 0. (4.11)
The mapdi,,, modulo the center, is the complexification of the differential of the embedding
in  PSUL, 1) — D. (4.12)

Itis tempting to think ofz,, as the coroot corresponding to the ragt di,, as the embedding
corresponding to this coroot, and so on, analogous to the Kac—Moody case. However, there
are fundamental differences. Vir does not have an Ad-invariant form (so that Vir is not a
generalized Kac—Moody algebra, in the sense of Borcherds); the category of highest weight
representations is not semisimple and parabolic subalgebras are simple, rather than of the
form semisimplex nilradical. Except in the cases= 1, 2, the embeddingsigl cannot be
globalized: PSUL, 1)™ does not have a complexification fer> 2, and this implies that

D does not have a complexification.

4.2. Naive orbit correspondence

In our context we know the unitary highest weight representations of Vir, and we want to
set up an orbit correspondence. The Fourier transform of an orbit requires regularization,
as we will see irSection Sbelow, so we first consider the moment map method of setting
up a correspondence with coadjoint orbits.

Suppose that; acts irreducibly and unitarily on a Hilbert spake If the corresponding
Lie algebra representatiomrds of highest weight type, with highest weight vectgr then
the moment map method of obtaining a coadjoint orbit proceeds as follows. Consider the
orbit of lowest weight vectors

G - P(tg) C P(H) (4.13)
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with the HamiltonianG-structure induced by the Fubini-Study metric; via the moment map

G -B(io) > g* 1 P(®) - o T -0
2 (v, v)

this orbit is identified with a unique coadjoint orlgit. Note that in this correspondence,
given a Lie algebra element, its classical energy (i.e. its value at a point of the coadjoint
orbit) is the same as its quantum mechanical energy in the state defined by the corresponding
highest weight vector.

In good cases (e.g. & is compact), if we identify® andG - P(vg) and let7T denote the
tautological bundle aP(#) restricted ta®, thenT* is the line bundle corresponding to the
Kirillov symplectic structure, and there is an equivariant isomorphism of Borel-Weil

H— HYO, T :w— sy, (4.15)

: (4.14)

wheres,, is the section o * given bys,, () = (w, ).

Let H(c, h) denote the unique irreducible highest weight module of Vir corresponding
to the character of determined byK - vg = cvg and Lg - vg = hwvg. The conditions
under which this representation is unitarizable are well-known: eg¢hed andh > 0, or
c=1—(6/mm+1),m=23,...,andh = (((m + 1)p — mg)? — 1)/4m(m + 1), for
someO< g < p <m.

Proposition 4.1. Suppose thak (c, h) is unitarizable. Then there isR-equivariant iso-
morphism of HamiltoniarD-spaces

O(ck* + q) < D -P(vg) C P(L),

wherec = ¢/24r72 andg = c¢n?(1 — (24h/c)). In particular, for h = 0 we obtain the
universal Teichmuller orbjtand forh > 0 we obtain an orbit below the Teichmuller orpit
in the sense dfig. 2, whered/dr is bounded

This follows directly from the identity

o R
(CK* _{_q’x):I_M’ xey (4.16)
27 (vo, vo)
takingx = « yields the value for; takingx = L,,, n # 0, shows thay is constant and
takingx = Lo yields the constant value far.

5. Orbital integrals

In Section 5.3we will heuristically calculate the Fourier transform offaorbit O in
ck* + Q, wherec > 0. In the calculation we will formally manipulate a fictional Haar
measure foD. The point ofSection 5.1s to discuss what we might mean by such an object.
The ideal possibility is that such a object exists as a limit of well-defined quasi-invariant
measures which are asymptotically invariant in some sense. It turns out that there does exist
a left-invariant Haar measure of this sort (a limit of the Malliavin—Shavgulidze measures
considered in11]). However, to obtain a mathematically well-defined transformOof
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it seems necessary to consider another possibility for Haar measure, which is somewhat
surprising.

In Section 5.4we will rigorously discuss the integrals which we arrive atSaction
5.3 When we calculate their values, there is another surprise. Instead of encountering
something reminiscent of characters, we find something related ta dred L genuses,
which is related taV = 1 supersymmetry, and which we used3action 2to explain the
form of the coadjoint action. This may or may not be a coincidence.

5.1. “Haar measures” forD

The groupD is the product of the two subgrouf (the stability subgroup of & R,
where we viewD acting onR as in(1.5)) andR, the translations. These two subgroups do
not commute. We therefore consider two coordinate systems

R x Pat?'R « D < Patf?R x R, (5.1)
(t,B) W pg=¥ =W, < (b, 1), (5.2)
where
Jo € o e
D —yx) = :
r+ e (x) G (5.3)

and we initially think of Path“R as consisting oémoothl-periodic functions8 : R — R

with B(0) = 0 (we will necessarily have to relax this smoothness condition when we
consider Wiener measure below). The left coordinates are given 8y ¥ (0), B =

In ¥’ — In ¥’(0); the formulas forr andb are not quite as explicit. In the left coordi-
nate multiplication is given by the straightforward formula

B (o 8

(t, B)(s,C) = <t + IS , B (s + [ ) +C() — B(s)). (5.4)
The multiplication in the right system is given by

(b, v)(c,m) =B, T), (5.5)
where

B fn—r+x e B ~ fn—r e - -

Bx)="»>b (H_T +cp—t+x)—-b|t+ Te cin—1) (5.6)

and7 is determined implicitly by the relation
_ e
T = Te (5.7)

There are corresponding left and right coordinate system®favhereR is replaced by
T = R/Z.
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Letv?’0 denote the pinned Brownian measure on the path spac%ﬁ%ﬂbith temperature
or varianceT . This is the Gaussian measure which corresponds to the Cameron—Martin
Hilbert space consisting 6F 1 paths with norm(1/T) [ b'2, where/[ f meansfol f,unless
otherwise specified.

Lemmab5.1. Interms of the left and right coordinate systems abéseeitherD or D, we
have

(7)

e
dr x dv92(B) = i dv20b) x dr, (5.8)
( f eB) dr x dv2°(B) = dv¥0p) x dr. (5.9)
Proof. This follows directly from the relations
z—freb B(x) = b(t +x) — b(7) g (5.10)
= feb’ XxX)=b(t +x 7). .

The probability measure\xg’o(b) x dt in De1, denoted dr, is what we referred to as
the Malliavin—Shavgulidze measure at temperafiie Chapter 4 of11]. (Note: in[11]
we used inverse temperatuseas the parameter, and we used= 2wt as our preferred
coordinate forS1, so there are some nuances in translating between our present notation
and that in[11].) This measure is well-known to be left quasi-invariant with respe@ to
(due originally to the Malliavins and Shavgulidze, in a much more general context), and the
transformation properties are what one would expect based upon purely formal calculations
(see (3.2.12) of Chapter 4 1], or Proposition 5. below).

Let dV denote a formal Lebesgue measure for the linear spac&#atiSince this is
an infinite dimensional space, this notion is ambiguous, even at the formal level. What is
needed is a Cameron—Martin space which gives us an idea of what we mean by volume
in the infinite dimensional limit. In the present context we take the Cameron—Martin space
mentioned previously, consisting 8 paths, with norm given by the energyb’2 (note
this is not natural geometrically—it depends upon the choice of coordinate).

We claim that we can interpretWds) x dr as a left Haar measure. To verify this in
a formal way, we first calculate (using the left coordinate system, where multiplication is
more explicit)

eB®)
L}, 5, (ds x dV(C)) = — ds x Jacobian{ — C + B(¥.c) — B(s)]dV(C)

The fact that the Jacobian is 1 (in a precise mathematical sense, using the Cameron—Martin
space) is verified on pages 110-111X4f]. In support of this note that

B(s)

p((t, B); (s, C)) = (}TB = ¥/ 4 (¥, c(0) (5.12)
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satisfies the requisite cocycle identitfys o ¢, n) = p(¥; ¢ o n)p(e; n), as a direct
consequence of the chain rule.
We now calculate

L, ¢)@V(b) x dr) =L, ¢ ((f eB> dr x dV(B))

eB+b(W1.5) gh(t)
(where we have used (5.11)). Now
/ BH) _ / . 1 —_ f B f & (5.14)
v 5 B)
because
B ) B / 5
S _ — e (5.15)
lI/z/,B("pt,I;L) <eB(w”él)/feB)

Plugging this intg5.13)shows that & (b) x dt is formally a left Haar measure.
In Section 5.4we will show that d7(b) x dr is asymptotically invariant, a& 1 oo,
which is a more precise sense in whig¥i(b) x dr can be viewed as a (weak) Haar measure.
We now want to formally consider right invariance properties of the measures above. We
formally calculate

RY, ¢ (dr x dV(B)) = dr x det(B — C + B(¥.c) — B(s))dV (B). (5.16)

The affine action orB is the coordinate expression for the right action9fC) € D on

the right coset spade \ D, hence the linear part of the action is a representation. Thus one
can argue that the determinant should define a characterlvénce sinc® is simple the
determinant must be trivial. Assuming the soundness of this argument, we conclude that

dm(y) = dr x dV(B) (5.17)

is aright Haar measure. This argument is questionable because the determinant simply does
not exist from the Cameron—Martin point of view.
We have drawn the following conclusions, using purely formal reasoning: (1) the expres-
sion dV (b) x dt is formally a left Haar measure; (2) the expressioxdV (B) might be a
right Haar measure. For (1) and (2) to hold simultaneously, we must give up the formal idea
that (either right or left) Haar measure is uniqueZdiThus in particular eitherrdx dV (B)
or the inversion of & (b) x dr = (f eB) dr x dV(B) can be taken as right Haar measure.
Given that uniqueness of Haar measure fails, there is an ambiguity about what we might
mean by the modular function. This is important in orbit theory for finite dimensional
nonunimodular groups (see p. 450[@f), where the modular function is related to the
function in(1.3).
In the case oD, we can formally compute thefunction using & -function regulariza-
tion. Recall fromSection 4hat the complex roots for the adjoint actiorjadn ) are integral
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multiples of a single roak; with a1 (Lg) = —1. Thereforg1.3) equals

g2 _ g—ny/2
=l ta—gng
n>0

— e X100 = Y12 T T (1-g") = & Oy~ 0g 12D g

iy =[]

n>0

1
= Eyl/zn(q), (5.18)

whereg = e™7.
5.2. Heuristic calculation of Fourier transformations, using left Haar measure

In this section we will work with the formal expressiomd(y) = dr x dV(B), for
which we have strong reason to interpret as a formal left Haar meas@elpn(5.1).

Our goal is to formally compute the Laplace transform of the afhivhich we naively
expect to define an Ad-invariant function dh Initially, we suppose thag(d/dr) € Vis
arbitrary, but eventually we will focus on the case in whigclis constant. We formally
calculate

/ ely@/dn+is, ) iwoo =\ol(0) eisc/ ely(@/dn). ¥-(g(dn)?+cx)) dmL ()
o ool D

=\ol(0) eisc/efy{q(1/;*1)(4/*1)’2+(c/2)5(11/*1)}dz dmi (W).
(5.19)
Now S(@~1) = —S(¥) o v L (w12 andS(¥) = b” — b2 Thus
_ 1 1 V(&) 1
1 _ 2 _ 2
/yalp )dt——/y(W) {b//—ib/ }ﬁdq/——/ N7 {b//—zb/ } dr

l 2 _ ”
:/{(y(wwf Wzy(df)w )b,+%y$>b,z} dr

=—fy”(w)¥/’b— %f yf;f)b’z dr, (5.20)

where in arriving at the last line we used the idenbity’ = ¥”.
Thus(5.19)equals

Vol () &5 / e 1W)/W)q—(e/2)y" Wb} g=(e/4) [/ #0024y () e (5.21)

Now consider the case in whighis a positive constant. We need to make sense of the
expression

1 /. A
ZYe*l/z)f(”z/“’ ) dV (b) dr (5.22)
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as a measure. It appears that this simply cannot be done, because of the nonlocal nature of
Y’ = ¢e’/(eb). If one attempts to formally compute the Radon—Nikodym derivative for left
translation, one arrives at complete nonsense.

We conclude that whileid, = dV (b) x dr is a reasonable candidate for a left Haar
measure, it simply is not the right one to use for orbit theory.

5.3. Heuristic calculation of Fourier transformations, using right Haar measure

In this section we will work with the formal expressiomd(y) = dr x dV(B), for
which we have some vague reason to interpret as a formal right Haar meaddre on
We again initially suppose thatd/dr) € V is arbitrary. We formally calculate:

/e(y(d/dt)+iSK,‘>iwoo
10) ool

— VOI(O) eiSC/ e(y(d/df),llffl‘(Q(dt)z-i-CK*)) dmR(W)
D

— \Vol(0) &5¢ / ef YaW# 24/ DB (=B At Gy o ()

— Vol (0) €5 / e/ (/2" Bya) (@ /(] €)2)) g=(e/4) [ VB gy o (). (5.23)

Remark 5.1.

(1) In the first equality we pug—1, instead ofy/, so that to this point we have only used
the assumption thatwk is a right Haar measure.

(2) Switching the integral oveP to an integral oveD is permissible for orbits of types
1-3 inTheorem 2.1but questionable for the others, because in these latter cases the
stability subgroups are noncompact. The facton®®lis the ratio of(1/co!)w™ and
dV (B), which should be a constant depending only upon the orbit, by invariance of the
two volume forms.

(3) Note that we simply deleted th®’ term appearing i§5.23), invoking the fact thaB
corresponds to a diffeomorphism 8%, hence should have a periodic derivative. This
is essential for the next step in our argument, which is to WBit® = w(t) — tw(z),
wherew(z) is a Brownian motion, since is not differentiable. This may explain why
we do not obtain characters at the end of this paper. Unfortunately, we simply do not
see how to retain this term and obtain mathematically well-defined integrals.

We now specialize to the case in whigls a positive constant. We then claim tif&a23)
equals

Vol (0) eiscfey(fq(w)ezlg/('/'eli)z) e_(yc/4)f312 dv(B) dr

o 1 e’B
ZVO'(O)éSCTyc) f f exp(y%) dvg;g/z)_l(B)dt. (5.24)
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wherev2:? denotes the conditioned Wiener measure &dation 5.1Formally we have
d20(B) = 2rT)">2e~W/2D [ B gy (). (5.25)

If we interpret theoo to mean 1+ 1+ 1 + - - -, we could interpret this as(0). Thus we
could interpretZ(yc) = C(yc)~¢©, whereC is independent of all the other parameters.
Accordingly, assuming > 0, we will rewrite(5.24)as

B
Vol (0) d55(ye)F © / f exp(y%) 20 (B) dr. (5.26)

whereT = 2/yc. In the next section we will see that this integral does exist, for orbits for
which d/dr is bounded and the stability subgroup is compact.

Thus, in contrast to what developed3ection 5.2while our argument thattck dV (B) is
a right Haar measure was not so strong, it does at least have the virtue of leading to integrals
that can be analyzed.

5.4. Rigorous discussion of integrals

As in [3] our basic method of establishing the existence and computing the integrals
above is to use a change of variables formula for Wiener measure.

Suppose thaf e Patlf;?R. Consider the transformation of the space P8thgiven by
B(t) — B(t) + f(Wo,p(1)), (5.27)
where(0, B) and¥y g correspond as i(b.1)—(5.3)

Proposition 5.1. For f as above

2B + f(¥o.p))
dv20(B)

1 1 2 " eB 2 nl
=exp| —55 /(f (Yo,8)° — 2/ (¥0,B)) (F> +2f06¢ )

implying

2
/ exp( - = / L Won) =" (Wo.p)) < d¥0(B) = expT1113).
T 2 : : [eB T 0

The Radon—Nikodym formula is a consequence of a nontrivial but standard formula for
transformations of Wiener space due to Gross (see pp. 110-I11]pWvith f in place of
bg, and just remembering that oyr no longer satisfies the special conditi;ﬁﬁ% = 0).
But using a formal calculation it is easy to explain why the result is true. Formally the
Radon—Nikodym derivative is given by (with = v )

dvp®(B + f(¥) _ exp—(1/2T) [(B+ f(¥)?)
dv20(B) exp(—(1/2T) [ B?)

(5.28)
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dvp(B + f(¥) _

1 / / 2
#9%8) eXp<—§ [ @8 sy + s )) , (5.29)

Note thaty’ = e/ [ e®. Now calculate

€

B \?2 B\’
/(ZB’f(l/f)/ + f(lﬂ)lz) = / {(f’(%%) +2f(¢) (f_> } ) (5.30)

o \2 B N2
/ @B F() +f (1)) = / {(f’wf)fTB) _ 2/ (;‘TB) }+2f’(1/f)|<13-
(5.31)

which formally implies the Radon—Nikodym formula. The second paRraiposition 5.1
follows from the first by integrating the Radon—Nikodym formula.

We can use this transformation formula to obtain an algorithm for computing the integrals
of the preceding subsection, especidtigmark 5.1For each fixed, solve the differential
equation

1 2
B (t, x) — Eh/zz(z, ) =g +0) (5.32)

subject to the boundary conditidiz, 0) = i (¢, 1) = 0. After the substitutio = e~"/2,
this equation is equivalent to the Hill's equatioR” (x) + ¢ (¢ + x) H(x) = 0, subject to
the boundary conditio®? (0) = H(1) = 1, where of coursé/ must be positive.

We then calculate (where, as$®ection 5.3y = v, 5)

2B
// exp <y%) dvg;?/z)fl(B) ar

(1, 9) — (122, 4)) 2B
://exp<yfcf( ©9) (}égiz G2l )dvg}g/z)l(B)dt

_ / QY2 (1. )~ (1.0)) gy (5.33)

Now consider the special case in whighis constant. In this case thetranslation is
irrelevant. We have

_ q 1— cos(v/q/c) . q
H = COS(\/;)C) + WSIH( Z.X) s (534)

(which is positive provideq < ¢7?), and

1—
W'(0) = —h'(1) = —2H'(0) = \@% V/Z)/C),

Thus forg < ¢ we can apply (Proposition 5.1) to obtain the following.

(5.35)
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Corollary 5.1. Suppose, y > 0,and g is constant. Then

00 g 1— cos(y/q/c)
//e p<yq feB)Z) dv(yc/Z) 1 (B) dr _exp<yc\/: sin(v/q/c) )’

providedg < c7r?, and diverges otherwise

Note that the integrand on the left-hand sid€ofollary 5.1is an increasing function of
g, so that as soon as the integral diverges at cr?, it diverges for aly > cn?.

Remark 5.2.

(1) Wheng = cx? the integral presumably diverges because we really should have an
integral over PSWL, 1) \ D, rather than Ro{ D. Forg > cx? the divergence is at
least heuristically linked to the unboundednesg ef? /([ €#)2, which we observed
in Section 3

(2) We can rewriteCorollary 5.1as

f e?B 1 X X
/ p(yq(felf)2 Bz 1B = {y0<sin(x)_tan(x)>}’ (530)

wherex = ./q/c. Although possibly coincidental, it is worth noting that sin (x)
andx/tan(x) are related to thel-genus and theé.-genus, respectively, which are
in turn related to theVv = 1 supersymmetry which we considereddection 2 via
elliptic cohomology (se¢5,15])).

(3) To obtain orbital integrals corresponding to orbits above the universal Teichmuller
orbit, itis necessary to regularize the divergent integrals above. One possible approach,
which applies to the elliptic orbits, is simply to eliminate the up directiona 2
1)-dimensional for El}). But this breaks thé&-symmetry, and it is no longer clear
how to evaluate the integrals.

We can also applgorollary 5.1to show that dy (b) x dt is asymptotically invariant in
a restricted sense.

Corollary 5.2. Abbreviatedvy (b) x dr to dvr(v), viewed as a probability measure on
Dc1. Then forg € D, we have

/ dvr(@ov)

dvr (¥)
providedp < m“.

p

—1| dvr(¥y) >0 as T 1 oo,

2

Proof. InSection 4.2 of Chapter IV ¢i.1] we observed thatto prove this, using a dominated
convergence argument, it suffices to prove that

. p [’ _
TI|Tn(;10/exp(ﬁ(fT)2> dvr(b) =1, (5.37)
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see (3.2.19)—(3.2.21) of Chapter IV[dfL]. This follows immediately fronCorollary 5.1
withec=2,y=T"1,¢g=p/2. a

Appendix A. The orbit method and PSUEl/,l)

In this appendix we briefly recapitulate some of the main points concerning the application

of the orbit method tcPS/lx\fl).
The Lie algebra is

iE p
g:su(l,l):[( ] ):EeR,pe(C}. (A1)
p —IE

The Ad-invariant formm? = E2 — | p|? (essentially the Killing form, which is nonexistent
in the Virasoro case) allows us to identify Ad and A@ndg with R1-2; hencem is rest
mass,E is energy, anth = p1 + ip is the momentum vector). The coadjoint orbits are
then precisely the rest mass shells.

The irreducible unitary representations I%S/lIl/,l) are well-known (segl12]). The
highest (respectively, lowest) weight series corresponds to the shells:%ith0 andE >
0 (respectively,E < 0), denoted?j,f. The principal series corresponds to the tachyonic
shells withm? < 0, and the complementary series involves an exotic inner product for a
nonunitary induced representation not clearly associated to any given orbit. We are mainly
interested in the first series, but in the end we will see that all three interact for small values
of the parameters, and Fig. 3we have attempted to convey the topology of the unitary
dual.

Let A = {w € C : |w| < 1}, and letk denote the holomorphic cotangent bundle,
equipped with the Poincare Hermitian metiidw)|2 = (1 — |w|?)2. The group PS(L, 1)
acts by automorphisms ef(as a Hermitian, holomorphic line bundle), covering its action
by linear fractional transformations af, and

. dw A dw

B _ _ian 2 = T4 N2
w = curv(k) = —iddlog|(dw)|” = 2i 1—[w?)?

(A.2)

is an invariant symplectic form. For any > O there is a corresponding actionRﬁ/U(\fl)
on«™/2, The (moment) map

wi (A, cunv(k™?)) = Oy iw— (p, E) = Qiw, 1+ |w|?)

_m
1-|wl?
(A.3)

is an equivariant isomorphism.

We now apply geometric quantization to this orbit. At this point we must make a choice.
Do we map the orbit to holomorphic sections of the corresponding line bundle, or do we
twist by half-densities? We will choose the first option (the ‘naive correspondence’). Either
way we would encounter surprises at a later point. Thus we associate to th@,grbithe
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m>>2  highest weight reps.
\
(m=1) «*?%
--------------- _3
T ~ K}‘/* , KA
/I/’ LT AR ::\\
,’ // Q; K%
1 — & ~
\ LY % g
A N i K2 ..
/_‘T’ e R principal
A e series
complementary ~ “~._ X )
series /) TTvmeeeepoemmT 5
lowest weight reps.
Fig. 3. Unitary dual of PS(L, 1).
unitary representation
a b
PSUL. 1) x HY,(k"/?) — HY,(k™/?) : (5 a) , f(2)(dz)™/?
(A.4)

—b+az 1 )2
_)f( Ez—bz) G—pn

(H?, denotes holomorphid,? sections) where

| f(d2)™/?)7, = /A | f(2)(d2)"/?2, 200 = fA |F@PA = [z1%" 2 dx A dy

1
= Z | %27 / 21— r?)"?rdr
n>0 0
2 (n+ I (m) (A5)

2
_m—llg)lfn| I'(m + n)

andf = Z fnZ".
[Note: Our realization above does not explicitly indicate why this is, in general, neces-
sarily a representation of the universal covering. To clarify this, it is convenient to realize
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PS/U(\l/,l) as the set of pair§ = (g, A) € SU1, 1) x Csuchthaté =a, g = (Z ]f)
and the multiplication is given by

S5 b1bz
8182 = &3, As3=A1+ Ax+log| 1+ —=
ayar
The precise interpretation ¢f-bz + a)2” in (A.4) as a holomorphic function af € A is
given by
l; 2m

(a — bz)™" = & (1 - 21) : (A.6)

which (for nonintegrain) does depend upafy not merelyg.]
As it stands this space is nonempty onlyif> 1. However the “vacuumtdz)”/2 has
norm squared2/(m — 1). It is therefore natural to rescale the inner product and define

-1
((f(d2)™/2, g(d2)"/?)) = %(f(dzw/z, g(d2)™?) 2. (A7)

From the last expression ifA.5), we see that this renormalized inner product can be
analytically continuedte: > 0, since the coefficien®(n+1, m) = I'(n+1)I"(m)/I" (m+
n) > 0.

Form = 1, i.e. for the representation correspondinglg., there is a remarkable
geometric interpretation of the rescaled inner product, as an integration process at the ideal
boundary of the Poincare disk:

|'m 7 f(dZ)m/Z g(d)"?),, = angn = / f(d)Y2g(dz)Y2. (A.8)

n>0

The point is that %/ extends to the boundary, and its restrictios tas the same as the odd

spin structure or$. The corresponding space of spinosf%éf, = QO(K|S1), has a Hilbert
space structure,

§é§®9§é§—>Ci¢®w—>/51¢iﬁ, (A.9)

which is invariant with respect to the natural actiorf®®, the double cover. There is also
a SU1, D-invariant polarization

H,=H] ®H,, (A.10)

whereH consists of boundary values of holomorphic sections'éf. The representation
H, is the dual ofH,f, and it corresponds t01, .
Note that in the case = 0, there is an intertwining operator

0 C— HA)SHYA) > 0.

One of the puzzles of the orbit method, from our perspective, is that there does not seem to
be any geometric interpretation of the inner product in the cases0< 1 (the part of the
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highest weight series which does not contribute to the Plancherel formula). Note that these
are not bizarre representations: For example undoubtedly the most important representation

of PSU1, 1) is the oscillator or metaplectic representation, which is the sum of the two
irreducible representations corresponding to the otbits . andOs3/> 4 (hence is actually
a representation of PStl, 1), the metaplectic group).

Each of the representations above, corresponding to the @hits, m > 0, has a
holomorphic extension to the universal covering of the complex semigroug2PG)-"
(consisting of linear fractional transformations mappifignto D°), given by the same
formula(A.5).

Now consider the other direction of the orbit correspondence, from the character point
of view. By (A.5)

<ei9/2 0

O e7|9/2 ) . Zn (dZ)m/z — ei(n+(m/2))9zn (dz)m/z (All)

If we analytically continue into the disk, i.e. we consider the action of the universal covering
of C*, C PSL* (2, C), then we obtain a regularization of the character

einrm
1-q°

Xm(T) =1tr(q = €27) = (A.12)

where we have replacef dy g = €277, Im(z) > 0.

Remark.

(a) (A.12) is the global expression for the holomorphic character, because the conjugacy
classes of PS2, C)* are parameterized Hy| < 1 (see 1.3 0f2]).

(b) Harish-Chandra developed another method of regularizing the trace, by initially viewing
it as a distribution and eventually proving that the distribution is defined by a function
on the regular set; when one takes the limit of the above formula at the boundary, one
obtains Harish-Chandra’s formulas for all the different components of the regular set
(see 1.5 of2]).

Now assume that: > 1. The Kirillov character formula is given by

o (o0((* )= /Ome—i«" I SN,
(A.13)

where j(x) = det/? (sinh(ad(x/2 —x/2))) /ad<x/2 _x/2> = sinh(x)/x,

which reduces to the calculus identity
X

e/ =

Note that in the Kirillov formula, the orbit has been shiftedshialf the sum of the positive
roots. This calculation is valid only for > 1. However(A.13) is also valid form = 1,

/ em= VxR P/ (4 _ (122 A chb. (A.14)
A
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whereOy ; is the forward light-cone, which can be obtained by taking the limif 1 (or
direct calculation).

An apparent paradox of the orbit method is that there does not seem to be room for
an orbital interpretation of the characters that correspond o < 1 (and if we had
used half-densities previously, when applying geometric quantization, we would not have
attached these representations to any orbits at all). This phenomenon is closely related to the
existence of the complementary series of unitary representations, and is perhaps related to
our failure in the text to find orbital integral representations for the discrete series characters
of the Virasoro algebra, which involve small values of the central charge.

As described iff12], one can parameterize the principal and complementary series by

Cﬁf), whereg is the value of the Casimir operator, the spectrum of the translation subgroup

R C PSU(l 1l)isexp2ri(t+7Z)),where0< t < 1,andr(1-71) < ¢q.Form < 0,the orbit

O, corresponds to the family of principal series representaﬁé}'ﬁsNhereq = (1/4)+m.

The characters of these representations can be represented as orbital integrals (the parameter
7 corresponds to the specification of a character for the stability subgroup of the orbit). The
complementary series corresponds to(t[;fé with ¢ < 1/4; the corresponding characters
apparently do not arise as orbital integrals. For any fixeith the topology of the unitary

dual, we have

¢V > D+ D1, asq|t(l-1). (A.15)

By mapping the(z, ¢g) strip to the plane minus the unit disk centered%tO), we obtain
the picture shown ifrig. 3 of the unitary dual, which is intended to convey the topology.

In this picture the representations correspond to the points along-aivés and the
xy-plane minus the unit disk centered a1 0). Form > 2 the highest (respectively, lowest)
weight representations are along the upper (respectively, lovaxis. Asm decreases from
2 to 0, the representations wind counterclockwise (respectively, clockwise) around the unit
circle centered atl, 0), reflecting the limit(A.15). From a geometric point of view, the
critical nature ofc andi (m = 2) corresponds to the fact that the corresponding Hilbert
space igocally conformally invariant. The geometry of the picture also reflects the critical
nature ofc /4 andi®* (m = 1).

Notably the picture does not suggest the critical natukéGfand« /2, which correspond
to the metaplectic representation and the interface with the Heisenberg algebra. This is
analogous to the apparent fact that the orbit picture for the Virasoro algebra does not hint at
the existence of the discrete series unitary representations, which are related to an interface
with affine algebras via the coset construction.
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